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Abstract 

Acoustic propagation in the ocean can be strongly affected by small random variations in 
ocean properties, including rough surfaces and volume fluctuations in the ocean or seabed. 
Such inhomogeneities scatter part of the incident acoustic field, stripping energy from the 
coherent part of the field. This scattered energy, or reverberation, propagates further in the 
modes of the ocean waveguide. The distribution of energy among modes is changed and 
the coherence of the acoustic field is reduced. 

This thesis introduces several models which describe scattering of low-frequency sound. 
First, the rough surface scattering theory of Kuperman and Schmidt is reformulated in terms 
of normal modes. Scattering from rough fluid-fluid interfaces and rough elastic halfspaces is 
modeled, and statistics of the acoustic field are calculated. Numerical results show the modal 
formulation agrees well with Kuperman and Schmidt's model, while reducing computation 
times by several orders of magnitude for the scenarios considered. 

Next, a perturbation theory describing scattering from sound speed and density fluctua- 
tions in acoustic media is developed. The theory is used to find the scattered field generated 
by volume fluctuations in sediment bottoms. Modal attenuations due to sediment volume 
scattering are calculated, and agreement is demonstrated with previous work. 

The surface and volume scattering theories are implemented in a unified modal rever- 
beration code and used to study bottom scattering in shallow water. Numerical examples 
are used to demonstrate the relationship between volume and surface scattering. Energy 
distribution among scattered field modes is found to be a complicated function of the scat- 
tering mechanism, the scatterer statistics, and the acoustic environment. In particular, the 
bottom properties strongly influence the coherence of the acoustic field. Examples show 
that excitation of fluid-elastic interface waves is a potentially important scattering path. 
Cross-modal coherences are calculated and used to study the loss of signal coherence with 
range. 

Finally, earlier work on scattering from the Arctic ice sheet is extended. Simulations of 
long-range transmissions are compared with data from the April 1994 trans-Arctic prop- 
agation test. The results show modal attenuations and group speeds can be predicted 
reasonably well, indicating that acoustic monitoring of Arctic climate is feasible. 

Thesis supervisor : Prof. Henrik Schmidt 
Professor of Ocean Engineering 
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Chapter 1 

Introduction 

1.1    Motivation and problems considered 

The field of underwater acoustics has seen large changes in the past decade or so. Some 

of these changes are driven by technological advances. The ability to store and process 

large amounts of data has led to more ambitious experiments, ranging from basin-scale 

ocean temperature measurements to the tracking of ocean fronts using tomographic arrays. 

Advances in computing speed have allowed modelers to consider more realistic models of 

the ocean. The effects of range dependence, elastic media, and random variations in the 

ocean's properties can be studied and numerical results obtained in a reasonable amount 

of time. The decreased time needed to run forward acoustic models also makes inversion 

for environmental parameters easier, leading to interest in matched field processing and 

tomography. 

Perhaps more important than the technological advances have been the changes in the 

types of problems which ocean acousticians are asked to solve. The end of the Cold War 

has brought a decrease in naval interest in deep-water and Arctic Ocean environments. At 

the same time the interest in anti-submarine warfare in shallower coastal waters such as the 

Persian Gulf has grown. There is also general scientific interest in coastal oceans, and several 

experiments are being mounted to use acoustics as a sensing tool for learning about coastal 

ocean processes. Better knowledge of these processes is important for understanding the 

effects of human activities on the marine environment, and the knowledge gained can be used 

to further improve acoustic models. On a global scale, increasing concern about climate 

change has led to several international acoustics experiments designed to measure ocean 

temperature, including the Heard Island/ATOC program and the trans-Arctic propagation 
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(TAP) experiment carried out in April 1994. 

These new areas of interest bring with them new challenges for the ocean acoustics 

modeler. Acoustic prediction in shallow water is quite difficult for several reasons. Shallow 

water propagation is strongly affected by sea bottom properties, which are often difficult 

to measure. Coastal environments will in general have range-dependent bathymetry, and 

random variations of the seabed, both within the seabed and at the water-bottom interface, 

will act to scatter sound. Shallow water oceanography is also quite complicated, and motions 

such as internal waves have been shown to have a large effect on sound transmission. This 

sensitivity to the bottom parameters and oceanography raises the possibility of inverting 

for ocean properties from acoustic data, if the propagation and scattering physics can be 

understood well enough. 

In long-range acoustic thermometry experiments bottom interaction is usually less sig- 

nificant, but oceanographic variability causes travel time and amplitude fluctuations in the 

signal. Since ocean temperature is determined from travel time, the ocean's variability may 

limit our ability to measure temperature. In the Arctic, the ocean is believed to be fairly 

calm, but the upward-refracting nature of the environment means that long range trans- 

missions will interact many times with the ice cover. The scattering from rough ice causes 

the acoustic field to become less coherent with range, and introduces time travel pertur- 

bations. For any long-range transmission, whether in the Arctic or temperate oceans, it 

is very important to model the range dependence of the ocean. In the Arctic several very 

distinct water masses are present. 

The work presented here is part of the overall effort to develop computationally efficient 

acoustic modeling tools to meet the needs outlined above. New methods for treating range 

dependent environments are being developed at MIT and elsewhere [69]. In this thesis 

we instead focus on the effects of small random variations in ocean properties. These 

random fluctuations scatter a fraction of the energy incoherently. Scattering has two main 

effects we would like to capture. First, energy lost to scattering causes attenuation of the 

coherent part of the acoustic field. Second, the scattered energy propagates further in the 

waveguide, affecting the coherence of the total sound field. This propagating scattered field 

is also known as the reverberation. 

The acoustic pressure can be expressed as a sum of normal modes, or resonances of the 

waveguide. This modal approach is appealing because low-frequency sound fields can often 

be described using a relatively small number of modes, resulting in efficient calculations. The 

modes can be thought of as vertical standing waves, and arise from constructive interference 
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Figure 1-1: General shallow water scenario. Roughness exists between different layers, and 
volume fluctuations exist in the sediment. 

of up- and down-going plane waves. 

The basic scenarios considered in this thesis are illustrated in Figs. 1.1 and 1.2. Fig- 

ure 1.1 shows a shallow water environment, with the water column overlying a sediment 

bottom layer and an elastic halfspace subbottom. The air/water, water/sediment, and sedi- 

ment/subbottom interfaces are all rough. A random scattering layer may be present within 

the sediment. In addition, internal waves will be present in the water column, though scat- 

tering from these fluctuations is not modeled in this thesis. While this picture is somewhat 

idealized, it is realistic in including many different types of scattering with different char- 

acteristic length scales. One of the main contributions of this thesis is that the integrated 

nature of the computer code lets us study these different mechanisms for scattering together 

or separately. Figure 1.2 shows the scenario used in modeling transmission for the TAP 

Arctic acoustic thermometry experiments. The sound field interacts with the ice cover, 

both sides of which may be rough. 

In the following chapters an earlier reverberation model developed for use with the 

wavenumber integration model OASES [45] is reformulated in terms of modes and used to 

study scattering from rough interfaces between waveguide layers. Rough fluid-fluid, fluid- 

elastic, and impenetrable interfaces are modeled. A new scattering model is presented which 

describes the effects of random variations in density and sound speed of a fluid. These results 

are used to study scattering from shallow water sediment bottoms containing randomly 

fluctuating layers. These different scattering models are combined into one computer code. 

Finally, a parameter study is presented showing the effects of ice scattering on the coherent 

portion of the acoustic field. This work is an extension of work done earlier by LePage and 

Schmidt [47]. 
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Figure 1-2: Arctic propagation environment. Upward refraction causes repeated interaction 
with the rough ice 

1.2    Overview of Relevant Literature 

The modeling of scattering from both rough interfaces and volume fluctuations has been 

an active research area for many years, and the related literature is vast. Much of the 

literature deals with scattering without considering the effects of locating the scatterer in 

a waveguide. We will briefly overview the main approaches before moving on to consider 

scattering and reverberation in waveguides, the main subject of this thesis. 

In rough surface scattering theory the basic problem is the description of the effects 

of roughness on an interface separating two halfspaces. Oglilvy [59] has published an ex- 

cellent review of publications up to 1986. An exact solution for the scattered field can 

be written using the Helmholtz integral theorem, giving the field in a volume in terms of 

the values of the field on the surface of the volume. The integral equation can be solved 

numerically to calculate scattering from a particular realization of a rough surface, and the 

relationship between roughness statistics and scattered field statistics can then be studied 

using a Monte Carlo approach. This method is computationally intensive, though useful 

for providing a reference solution for comparison with other solutions [80]. As a result the 

scattered field is generally found using an approximate method. The two most frequently 

used approximations are the Kirchoff (or tangent plane) approximation and the perturba- 

tion approximation. In the Kirchoff approximation the curvature of the slope at each point 

on the rough surface is assumed to be small compared to a wavelength. Mathematically 

the requirement is ka cos 6 » 1, where k is the acoustic wavenumber, a is the radius of 

curvature of the surface, and 6 is the grazing angle. The surface is considered to be locally 

fiat, so an incident wave is scattered in the specular direction. The reflection coefficient 

calculated for a flat interface is used, with the angle of incidence adjusted by the slope 
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of the interface. One attractive feature of the Kirchoff approximation is that there is no 

restriction on surface height or slope, as long as the slope changes slowly. 

The scattering problem can also be solved using the method of small perturbations 

(MSP). In this approach the rough surface slope is assumed small, allowing the boundary 

conditions at each point on the surface to be written in a linearly shifted and rotated local 

coordinate system. The acoustic field is decomposed into coherent and scattered parts, and 

the boundary conditions on the surface are then expanded in a Taylor series around the 

mean interface, with the roughness height as the small parameter. If the roughness height 

is small compared to an acoustic wavelength only the first-order small terms are retained. 

The resulting expressions can be solved to find the scattered field and the loss from the 

coherent field due to scattering. Early work of Bass and Fuks [2] on perturbation scattering 

theories has been extended by Kuperman [43] and Kuperman and Schmidt [44, 45, 68]. The 

Kuperman-Schmidt theory (abbreviated KS) forms the basis for the work in this thesis. 

Work by Bass and Fuks on scattering from a rough boundary described by an impedance 

boundary condition also provides the basis for several articles by Kudryashov, Kryazhev, et 

al. [41, 40, 42]. In these papers the impedance boundary condition is perturbed, assuming 

the roughness is small and gently sloping. Expressions for the scattered field in a waveguide 

are found. This theory has been applied to studying scattering from a rough ice cover, 

including the effects of elasticity. The main drawback of this approach is that the impedance 

boundary condition is only a single boundary condition, and cannot satisfy continuity on 

the surface [12, p. 87]. The impedance scattering theory is compared with the KS theory in 

Chapter 5, and in more detail in Appendix C. The comparison shows that the two theories 

agree in situations where only one boundary condition must be satisfied (pressure-release 

or rigid boundaries), but that the impedance scattering theory gives unphysical results in 

other cases. 

A number of other rough surface scattering theories are available. In analysis of field 

data Lambert's law is often invoked. Lambert's law is really an empirical fit to scattering 

data, expected to be valid for extremely rough surfaces. It predicts that the scattering 

pattern is sinusoidal, with the maximum scattering normal to the surface. Lambert's law 

seems to fail when low grazing angles or near-specular scattering is considered [19]. Rough 

facet models have also been developed, in which the rough surface is considered to consist of 

an distribution of flat facets with known reflection properties. Twersky [82] has published a 

number of papers modeling scattering from a distribution of 'bosses' on an otherwise smooth 

surface. These bosses may be of arbitrary shape, and the scattering from each individual 
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boss is known. This theory allows consideration of multiple scattering between bosses on the 

rough surface. Tolstoy [81] has developed a similar approach, modeling scattering from a 

distribution of hemispheres located on a fluid-fluid interface. His results show the existence 

of a roughness boundary wave, not predicted by other theories. This boundary wave has 

been observed in scale model studies of outdoor sound propagation [1]. One disadvantage 

of boss scattering theories is that the surfaces modeled may not be physically realistic. 

In volume scattering the canonical problem is modeling propagation through unbounded 

random media. Chernov [11] and Ishimaru [33] have published well-known books treating 

this problem. Different approaches are appropriate depending on the scale of fluctuations 

in the medium. If the variations in medium properties are small, a perturbation solution 

can be sought. Chernov developed a perturbation solution for an acoustic medium with 

small random variations in density and sound speed. He showed that the density scattering 

term has a maximum in the backscatter direction, an effect we will see in Chapter 3. Citing 

data taken by Beranek, Chernov argued that density fluctuations are generally small in the 

ocean and can be ignored. 

The next level of complexity in volume scattering theory is to consider sound incident 

from the water column on a sediment bottom containing random layers. Waveguide effects 

are neglected; this is justifiable if the receivers in an ocean scattering experiment are fairly 

far from the ocean surface. Volumetric scattering from within the bottom has been modeled 

by assuming the scattering sources are uncorrelated uniform spheres [72, 37]. Perturbation 

approaches based on Chernov's work have been developed by Ivakin and Lysanov [35] and 

Hines [31]. Ivakin and Lysanov used a plane wave approach which did not include contribu- 

tions from lateral waves, while Hines used the method of steepest descent to capture lateral 

as well as refracted wave contributions. D.J. Tang [75] developed a self-consistent pertur- 

bation theory to model scattering from sound speed fluctuations in the sediment. He was 

able to calculate a coherent field reflection coefficient which included loss due to scattering 

[78]. His results are used in Chapter 3 for comparison with the self-consistent perturbation 

theory developed in this thesis, which includes both density and volume fluctuations. 

Gilbert [24] has used a Born-approximation scattering technique to estimate plane wave 

backscatter from stochastically described near-surface bubble layers. Gilbert's approach 

gives a reasonably good fit to experimental data. 

So far all the scattering theories described treat either rough surface scattering or volume 

scattering, but not both together. In the real ocean both interface roughness and volume 

fluctuations exist. Ivakin and Lysanov [36] have considered both effects at the same time, 
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and found the volume and surface scattering effects are not additive. At low grazing angles 

for fast bottoms the presence of roughness enhances penetration of sound into the bottom, 

generating more volume scattering. In this thesis we will ignore cross-effects between the 

scattering mechanisms for simplicity. 

1.2.1    Relationship between surface and volume scattering 

Most theoretical developments treat surface and volume scattering as completely different 

problems. Recently, however, several authors have begun to view the problems as related. 

Ivakin [34] views rough surfaces as special cases of volume fluctuations. Any material from 

the lower medium present above the mean interface can be viewed as a volume fluctuation 

of the upper medium's properties, and vice versa (see Fig. 1.3). There are also situations 

in which ocean randomness can be equally well described in terms of volume or surface 

variations. The sediment bottom shown in Figure 1.4, which shows sediment structure 

for a site near the mid-Atlantic ridge as imaged by a bottom-penetrating sonar, gives one 

example [48]. The sediment is seen to be deposited in layers, most of which are fairly flat. 

At around 20 m. and 60 m., regions of rapid variation in the sediment are seen. These 

regions could be viewed as layers in which sediment volume properties change randomly, or 

as stacks of rough interfaces. Tang [77] has shown analytically that both descriptions give 

identical scattering results. 

In this thesis perturbation approaches to scattering are used. This leads us to classify 

problems as surface or volume scattering problems based on mathematical convenience. 

This is illustrated by considering two scenarios- first, scattering from an irregular basalt- 

water interface, and second, scattering from random variations in the sediment. In the first 

case differences in sound speed and density between the water and basalt are quite large, 

while the height and slope of the variations may not be. The scattering is best described by 

a rough surface scattering theory, which takes height and slope as the small parameters. In 

the sediment case the sound speed and density variations will generally be quite small, but 

bottom properties may fluctuate rapidly in the horizontal. A perturbation theory taking 

sound speed and density fluctuations as the small parameters will be less restrictive. 

It is worth stressing again that the classification of a problem as volume or surface scat- 

tering is often more a matter of mathematical convenience than physics. The numerical 

results in Chapter 4 show no striking differences in the type of scattering generated by sur- 

face and volume scattering. Much larger changes are seen when effects of bottom elasticity 

are included. 
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Figure 1-3: Two-halfspace problem. Randomness can be viewed either as surface roughness 
or as volume fluctuations of material properties near the mean interface. 

Time from water/bottom interface (sec) 

Depth from water/sediment interface (m) 

Figure 1-4: Bottom-penetrating sonar image of sediment layers near the mid-Atlantic ridge 
(plotted sideways). Note the random layers near 20 and 60 m. depth. 
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Next we review previous work which considers waveguide propagation effects on the 

scattered field. These can generally be grouped according to the type of propagation model 

used. Since this thesis focuses on modal propagation we pay particular attention to modal 

reverberation models. 

1.2.2    Non-modal reverberation models 

Ray-tracing is the oldest numerical modeling technique for ocean acoustics, and has been 

used to model the effects of ocean non-uniformity. Baxter and Orr [3] used a ray tracing 

code to study the effects of internal waves on the thermocline in shallow water. A stochastic 

ray tracing model was developed by Schneider [70] which simulated ocean randomness by 

perturbing ray angles at different points along the ray path. Lynch et al. developed the 

HARPO 3-D raytracing code, used to study the effect of large scale ocean inhomogeneities 

such as eddy fields[50]. Ray codes such as HARPO and ARTIST [49] can handle arbitrary 

bathymetry and can be used to model scattering from large features. However, the ray 

equations are a high-frequency approximation, and the resulting problems with turning 

points and caustics are well known. In addition the equations are nonlinear. It has been 

suggested that ray solutions may be chaotic at long ranges [60], though it is not clear 

whether ray chaos is a problem in practice. 

The parabolic equation method can be used to study the effect of sound speed profile 

variations. Scheer and Baggeroer [67] used Collin's FEPE code to propagate through real- 

izations of a random ocean. The PE result was sampled at different ranges and decomposed 

into modes, showing leakage of energy between modes due to the non-adiabatic nature of the 

propagation. Peregrym [62] used the parabolic equation to model scattering from solitary 

waves in the thermocline in shallow water. The parabolic equation method has not been 

applied as much for scattering from rough surfaces, since the mathematical formulation is 

not completely resolved [38, p. 344]. 

Boundary element methods have been used to model scattering from large-scale fea- 

tures [23, 19]. These methods could also be used to model scattering from smaller scale 

surface roughness, but the calculation would be extremely computationally intensive. Finite 

difference methods are also available [13] but are also very computationally intensive. 

Finally, Kuperman and Schmidt have extended the self-consistent rough surface scat- 

tering theory [44, 45] to consider general scattering in stratified acoustic and elastic media. 

A reverberation code based on the SAFARI wavenumber integration approach has been 

developed [68] which takes into account the effects of the waveguide on scattered field prop- 
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agation. Both individual realizations and ensemble statistics of the scattered field can be 

calculated. This approach will be discussed in much greater detail below. The method 

has been extended by LePage [46] and Fan [19] to consider 3D scattering from a roughness 

patch of limited extent. Fan includes waveguide effects, and excitation of waveguide modes 

can be seen in his realization results. 

1.2.3    Mode coupling theories 

If the ocean depth is constant and the sound speed profile is independent of range, modal 

solutions of the wave equation can be sought using separation of variables. If the ocean 

depth changes, either due to large-scale bathymetry or interface roughness, or the sound 

speed varies with range, the problem is no longer separable. In these cases a coupled 

mode solution can be sought. The acoustic pressure can be expanded either in terms of 

local modes, which satisfy the boundary conditions at a given range, or ideal modes, which 

are the eigensolutions for the average sound speed profile (assuming the water depth is 

constant). Expansion in terms of local modes works best when the ocean depth is changing, 

for example when the bottom is sloping. When modeling coupling due to interface roughness 

and/or small scale oceanographic variability, the ideal mode approach is preferable [51] and 

is used by most authors. 

At long ranges coupling will cause the modal amplitudes to reach a stable distribution, 

which represents a balance between coupling and attenuation.  Generally energy from the 

low order modes is coupled into the higher order modes, which are attenuated more rapidly. 

If there is no attenuation the energy will eventually be equally partitioned among all modes. 

Suzanne McDaniel has used coupled mode theory to study a number of effects, including 

volume scattering, changes in waveguide depth, and the effects of scattering from a rough 

bottom.  In her first paper on rough surface scattering [53] she follows the coupled mode 

theory of Pierce [64]. The coupling coefficients are found to be dependent on the wavenum- 

ber difference kn - km as well as the rms slope of the rough interface. The change in power 

in mode power due to coupling is calculated.   Power loss to the continuous spectrum is 

shown to be important for modes close to cutoff. A follow-up article rederived the results, 

allowing for a density discontinuity at the ocean bottom [52]. Some examples of comparison 

with experimental data are shown.  McDaniel and McCammon [55] have used mode cou- 

pling theory to estimate coupling caused by depth variations of stratified sediment layers. 

The sediment variations are described by a power law spectrum.   This paper includes a 

calculation of the horizontal self-modal coherence - i.e.  coherence of a mode evaluated at 
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two points {x,yi,z) and {x,y2,z).   One example shows that total coherence can actually 

increase with range, as higher order modes decay. 

McDaniel [54] has also carried out a comparison of her coupled-mode theory with the 

self-consistent scattering theory developed in Kuperman and Ingenito. In this paper she 

extends her earlier work to look at scattering from a rough sea surface. Her main conclusion 

is that the modal attenuation predicted by Kuperman and Ingenito is exactly the same as 

that predicted by her second-order approach to coupled mode theory. The mode coupling 

estimates show only energy scattered out of each mode, not energy scattered back into the 

mode from other modes. Kirchoff scattering theory does not agree as well. 

James Miller analyzed mode coupling due to scattering from the rough sea surface in his 

Ph.D. thesis [58]. In the limit of small wave height he uses adiabatic mode theory to estimate 

travel time and phase biases introduced by surface roughness. For larger wave heights where 

coupling is important, the field is divided into adiabatic and coupled parts. The Lippman- 

Schwinger equation is used to write the full Green's function in terms of the Green's function 

for the adiabatic case. The coupling potential term in this equation is identified with the 

mode coupling coefficient, and McDaniel's results for the single-scatter coupling coefficient 

for the rough interface are used. Thus energy travels in an adiabatic mode to the sea surface, 

undergoes a single-scattering process and travels away in an adiabatic mode. 

Kennett [39] has published theoretical results for mode coupling due to elastic inclusions 

in waveguides. His work is mainly treating the seismic problem of propagation at very low 

frequencies (1 Hz. or less). In addition, the inclusions he treats are large deterministic 

blocks, not interface roughness or volume fluctuations. Still, it might be possible to extend 

his work to deal with mode coupling in elastic waveguides. 

Boyles [7] has found an exact coupled mode solution for a cylindrically symmetric ocean 

with a time varying sea surface and horizontal changes in the sound speed. He finds two 

coupling terms, one of which is proportional to the values of the incident and scattered modes 

on the boundary, and the other to the derivatives of the modes on the rough boundary. 

Boyles' article includes an excellent bibliography. 

Dozier and Tappert [16] published a well-known paper which uses a fiber optic waveg- 

uide theory to estimate energy transfer between modes caused by scattering from small 

sound-speed variations due to internal waves. A spectral modal of internal wave variability 

is developed which is consistent with the Garrett-Munk spectrum. This paper assumes that 

the cross-modal coherences are zero, which will not be true for shorter ranges. The "master 

equation" for the evolution of modal intensities is derived, and its behavior at long ranges 

25 



is analyzed, showing the modal energy eventually is repartitioned into a configuration in- 

dependent of initial mode excitations. A similar approach was used by Bellis and Tappert 

[4] to analyze multiple rough surface scattering. The results predict that coupling between 

modes depends mostly on the second derivative of the rough boundary. 

Gorskaya and Raevskii [26] study mode coupling due to a rough pressure-release surface 

using a multiple scattering method. The boundary conditions are expanded in a Taylor 

series, and linear terms are retained. Expressions for the decay of the coherent field and the 

modal coherence are derived. It is argued that the cross-modal coherences are small and 

can be neglected. In some limiting cases the intensity equation can be rewritten in terms of 

a diffusion equation. In a later paper the authors [27] extend this technique to scattering 

from a rough fluid bottom. 

1.2.4    Modal scattering theories 

A number of authors have combined rough surface or volume scattering theories with modal 

descriptions of the pressure field. The work in this thesis falls into this class. Scattering 

causes energy transfer between modes, as in coupled mode theory, but multiple scattering 

is generally neglected. Phenomena such as modal equipartition cannot be modeled using a 

single-scatter theory, since the scattered energy is not allowed to redistribute itself among 

the modes. Neglect of multiple scattering means the results may not be accurate at long 

ranges. Jackson et al. [37]have argued that the single scatter approximation is valid if at- 

tenuation is mostly due to absorption rather than scattering, the idea being that if scattered 

energy is attenuated rapidly it will not have a chance to rescatter. Thus the validity of the 

approximation will depend on the scenario considered. 

Ingenito [32] derived the scattered field from an object located in an isovelocity water 

column overlying a layered bottom. Scattering from a rigid sphere is examined in detail. 

The acoustic field in the water is written as a sum of modes, and each mode shape is 

expressed as a sum of up- and down-going plane waves. The scattering of plane waves 

corresponding to each mode is described through the sphere's plane wave scattering coef- 

ficient. Scattering from each incident mode into every other mode is considered, meaning 

the scattering coefficient is evaluated at a discrete sets of incident and scattered angles 

corresponding to mode propagation. 

This approach has been extended by a number of authors. Yang [87] decomposed the 

normal modes into plane waves using the WKB approximation, allowing nonconstant sound 

speed profiles. Rough boundary scattering was modeled by finding the plane-wave scattering 
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functions for hemispheres located on pressure-release and rigid surfaces. The portion of the 

incident mode propagating toward the rough surface scatters into the out-going parts of 

other modes via a plane-wave scattering coefficient. Dale Ellis [17] has recently published 

another description of a normal mode reverberation theory which proceeds along the same 

lines, decomposing the normal modes into up- and down-going plane waves and invoking 

the ray-mode analogy to describe the scattering process. Ellis used Lambert's law to give 

a plane wave scattering coefficient for his calculations. Earlier work by Zhang and Jin [88] 

uses the same general method. 

This approach to rough surface scattering in these papers is physically intuitive and 

is quite general, allowing for the use of a variety of scattering theories to calculate the 

scattering coefficient. However, we notice that only the up-going part of the scattered 

field is taken into account (for bottom scattering); the down-going portion of the field is 

neglected. In effect the Rayleigh assumption is made - the scattered field is assumed to 

consist only of waves traveling away from the rough interface. This assumption may seem 

problematic, since Ogilvy [59] notes that the scattered field boundary conditions cannot be 

satisfied exactly under the Rayleigh approximation. 

The more rigorously derived KS theory can be used as a check on this assumption. 

The decomposition assumed in the wavenumber integration approach shows clearly that 

both up- and down-going plane waves are needed to satisfy the scattered field boundary 

conditions. Furthermore, in reverberation problems it is clear that there will be both up- and 

down-going scattered waves traveling in the waveguide. Thus it seems clear that heuristic 

approaches based on the ray/mode analogy are not formally consistent with MSP scattering 

theory. The more important question is whether the extra assumption made by Ellis and 

others will have a large effect on the results. Kuperman and Schmidt have argued [45] that 

using the Rayleigh hypothesis is often valid. If the horizontal cycle length of a ray is much 

longer than the roughness correlation length, energy scattered at a rough bottom into a ray 

will be incoherent with the roughness when it next interacts with the bottom. Since the 

energy is incoherent it will have little effect on the boundary conditions, so this down-going 

scattered energy can be ignored. On the other hand, if the waveguide is shallow compared 

to the roughness length scales (as in an Arctic ice sheet), the down-going scattered field 

component must be included. 

A number of articles published have used perturbation theories to describe scattering in 

a modal environment. Shang [71] has published a result for long-range reverberation due 

to a rough fluid bottom.   This approach is quite similar to that developed in Chapter 2, 
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though it is limited to an isovelocity water column and isovelocity fluid bottom, and cross- 

coherences between the scattered field modes are assumed to be zero. The scattered field 

is written using the Helmholtz integral theorem. A result for the reverberation intensity is 

calculated which involves the second moment of the roughness profile. The second moment 

is expressed, through the Fourier transform, in terms of the roughness power spectrum. 

The final result shows that the intensity is a sum over modes with the summation kernel 

weighted by values of the roughness spectrum evaluated at differences between the mode 

eigenvalues. 

Harper and Labianca [30] use a perturbation theory to study scattering from a time- 

varying rough ocean surface. The pressure field is written in a series expansion, with 

zeroth order corresponding to the unperturbed modes. First and second order terms are 

calculated for 2D and 3D cases. The time-varying nature of the surface causes a spreading 

of the signal bandwidth. In general the carrier signal is shown to be reduced in amplitude, 

and the spectrum of the ocean surface is mapped onto signal sidebands on either side of 

the carrier. If the integral expression Labianca and Harper derive for the scattered field is 

evaluated using contour integration (not done in their paper) the result can be shown to be 

exactly equivalent to that derived in Chapter 2 for scattering from a rough pressure-release 

surface. 

There have also been a number of approaches which treat reverberation caused by vol- 

ume scattering. D. J. Tang [76] has used first-order perturbation theory to model scattering 

by sound speed and density fluctuations in sediment bottoms. The scattered field prop- 

agates modally, and the expected intensity of the scattered field is found from a double 

integral over the scattering volumes, using the spatial correlation function to describe the 

volume fluctuations. A Gaussian form of the spatial fluctuation is assumed and used to 

simplify the spatial integrals. Scattering into the continuous spectrum is neglected. 

Modal theories have also been developed to model scattering by sound speed variations 

in the water column, from internal waves or other oceanographic disturbances. Sutton and 

McCoy have examined both single- and multiple-scattering from inhomogeneities. Their 

single-scatter theory [73], which has similarities to the work presented here, uses a first order 

perturbation, Born approximation approach to calculate the scattered field. The average 

intensity is calculated for each mode as a function of range, and the effects of various length 

scales for the inhomogeneities are examined. Their multiple-scatter theory [74] assumes the 

ocean is divided into range steps Ar which are small enough that the scattering within each 

can be described using a single-scatter theory like that in [73]. The self-coherences of the 
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modes are calculated at a fixed range r, and the coherences are marched out in range in steps 

Ar. This work neglects scattering from the discrete modes into the continuous spectrum, 

and assumes, as do Dozier & Tappert, that cross-modal coherences can be ignored. Beran 

and Frankenthal [6] have generalized this work by calculating the cross-modal coherence 

functions. This work is quite interesting and is useful for examining the validity of the 

"random phases" argument made in Dozier and Tappert. It is subject to several restrictions, 

namely 1) a parabolic equation approach is used to solve for the modal amplitudes, limiting 

the approach to small grazing angles, and 2) the coherence is calculated in range steps 

Ar which are constrained to be large compared to the acoustic wavelength and correlation 

lengths of the sound speed fluctuations. This latter restriction means, for example, that their 

theory could not be used to estimate the spatial correlation of the field along a horizontal 

line array. However their work is extremely interesting as it provides a method for extending 

single-scatter results to consider multiple scattering. 

1.2.5    Summary of the state-of-the-art 

At this point the most general and widely applicable rough interface reverberation theory 

is probably that developed by Kuperman and Schmidt. The theory as implemented in 

Schmidt's scattering code (OASS) [68] can model scattering from both fluid and elastic 

interfaces, and the backscattered field is implicitly included in the solution. One drawback 

of the KS formulation is that is appears to be difficult to include the effects of correla- 

tion between roughness on different interfaces when calculating ensemble statistics of the 

scattering. 

As detailed above, a large number of modal reverberation and coupling models have been 

developed. The advantages of the modal approach are that computations can be quite fast, 

and that the intermediate analytic results often give useful physical insight. However, very 

little work has been done on mode coupling or scattering due to rough elastic interfaces. The 

one exception of which the author is aware is the impedance scattering theory of Kudryashov 

and Krysazhev [40]. As discussed in Chapter 5, the impedance scattering theory used only 

seems to be valid for high-impedance boundaries. 

One common assumption made in most modal approaches to either surface or volume 

scattering is that the cross-modal coherences are zero. Since the field in the absence of 

scattering is totally coherent, this assumption can only be expected to be true at long 

ranges after the field has been thoroughly "randomized" by scattering. It is often argued 

that the cross-modal terms can be neglected because they are expected to contribute little 
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to the overall reverberant field intensity. This may be true, but for many signal processing 

applications the coherence loss due to scattering may be of more interest than the scattered 

field intensity. Beran and Prankenthal [6] have made good progress toward retaining the 

cross-modal information. Still, there are several restrictions on their approach, as discussed 

previously. 

In volume scattering, several Born approximation theories have been developed which 

model scattering from both sound speed and density fluctuations, and Tang has developed 

a self-consistent theory for scattering from sound speed fluctuations only [75]. A self- 

consistent theory including both scattering mechanisms would be helpful, since density 

fluctuations have been shown to be important [86] and mean field attenuation will affect 

total field correlation statistics. 

1.3    Contributions of thesis 

This thesis makes several contributions to scattering and reverberation theory.  These are 

summarized by area: 

Rough surface scattering and reverberation: 

• The Kuperman-Schmidt theory is reformulated in terms of normal modes. Scattering 

from rough fluid and impenetrable interfaces and rough elastic halfspaces is considered. 

• The relationship of the Helmholtz integral theorem to the reverberation problem is 

clarified. 

• The results are implemented numerically and compared with OASS results. Good 

agreement is shown, and computation time is reduced by several orders of magnitude. 

• The reverberation code is used to develop a better understanding of the effects of the 

roughness statistics, acoustic environment, and scattering mechanism on the scattered 

field. 

Volume scattering and reverberation: 

• A new self-consistent perturbation theory is derived which accounts for scattering 

from both sound speed and density fluctuations in a fluid. 

• The theory is applied to find modal attenuation due to scattering from a random layer 

in the seabed. Agreement with Tang's results is shown. 
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• The expected spectral distribution of scattered energy is calculated and used to de- 

velop physical insight. Three-dimensional effects and the relative importance of sound 

speed and density fluctuations are examined. 

• Reverberation in a 2D ocean is modeled and implemented. 

• Surface and volume scattering for different ocean scenarios are compared directly. 

The mechanisms are shown to be equivalent when describing randomness within the 

sediment. 

Scattering and propagation in the Arctic: 

• Parameters of the rough ice sheet which have the largest effect on modal attenuation 

and group speed are identified. 

• Long-range propagation is simulated and compared to experimental data. 

• The scattering theory of Kudryashov et al. is compared with the KS theory, and 

theoretical differences are noted. Examination of both theories applied to scattering 

from a rough ice sheet suggests that more work remains to be done on this important 

problem. 

1.4    Overview of thesis 

Chapter 2 begins by reviewing normal mode theory and the KS scattering theory. A 

wavenumber domain-based modal formulation of the KS approach is developed using the 

Helmholtz integral theorem. Results are presented for a number of kinds of rough inter- 

faces, and for (x,z) and (r,z) oceans. Both the forward-scattered and back-scattered field 

are found. The statistics used to describe the reverberant field are defined and calculated. 

In Chapter 3 a new self-consistent theory for scattering due to sound speed and density 

fluctuations is derived. Numerical results for the scattered field power spectral density are 

presented and discussed. Modal attenuations due to scattering are calculated for a 3D 

ocean. Expressions for reverberation in a 2D ocean are then found. 

Chapter 4 presents numerical results for the two reverberation theories. First, rough 

surface scattering results are compared to predictions from Schmidt's OASS, and good 

agreement is demonstrated. Scattering generated by rough surfaces and volume fluctuations 

is compared. With both scattering mechanisms the spatial correlation statistics of the 

scattered field are shown to be shaped by waveguide propagation effects. The backscattered 
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intensity vs. time is found for a number of scenarios, showing the roles played by the 

continuous spectrum modes and elastic interface waves. 

Chapter 5 presents a parameter study of the effects of ice sheet properties on scattering 

loss in long-range Arctic transmission, using a modified version of LePage's [47] earlier work. 

Data from the April '94 trans-Arctic propagation experiment are compared to simulation 

results using historical data to describe the environment. The results show that some parts 

of the Arctic were warmer than the historical databases indicate. 

Chapter 6 summarizes the physical insights gained from the modeling, and suggests 

directions for future work. 
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Chapter 2 

Scattering from rough surfaces 

The scattering theory developed by Kuperman and Schmidt [44] has been coupled with 

the OASES propagation model and used to study reverberation in both shallow water and 

Arctic ocean waveguides. This implementation is quite versatile and can model a variety of 

fluid and elastic interfaces. Unfortunately the calculations involved in finding the scattered 

field are very computationally intensive. Since many ocean waveguides are well described 

in terms of modal propagation, it is natural to think of reformulating the KS scattering 

theory using a modal expansion of the pressure field. This reformulation is presented in 

this chapter. The numerical results shown in Chapter 4 show that the scattering physics 

are described well while computation time is reduced by several orders of magnitude. 

The formulation is developed starting with the Helmholtz integral theorem, which states 

that the pressure field in a volume can be written in terms of the values of the pressure 

field and its derivatives on the boundaries of the volume. Below we show that this means 

the scattered field in the waveguide can be written in terms its boundary conditions at the 

rough interface. The KS scattering theory directly gives the necessary boundary conditions 

for the scattered field. 

This chapter begins by reviewing the normal mode solution for an ocean with no rough- 

ness. Notation is introduced and the modal form of the Green's function is reviewed. The 

KS scattering theory is then discussed. In the third section the Helmholtz integral theorem 

is used to develop the the scattering formulation for a two-dimensional ocean. The problems 

of rough fluid-fluid boundaries, impenetrable boundaries, and a rough elastic halfspace are 

treated. The resulting expressions for rough pressure-release and rough fluid-fluid bound- 

aries are closely related to results shown in the literature; no comparable previous result is 

known for the rough elastic interface. Statistical measures of the reverberant field, including 
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the cross-modal coherence and spatial correlation of the field, are introduced. 

2.1    Solution to unperturbed problem 

The linear wave equation in a fluid is derived from the hydrodynamic equations describing 

particle motion, in the limit of small amplitude disturbances. If the motion is assumed to 

be periodic with time dependence elu,t, where to is the radial frequency, then the acoustic 

pressure obeys the Helmholtz equation: 

V2 + k2{f,z) p(f,z) = 0. (2.1) 

where the wavenumber is defined as fco = -^-. In general in the ocean the sound speed 

depends much more strongly on depth than on the horizontal coordinates. If we assume 

c to be a function of depth only, and restrict ourselves to considering an (x, z) Cartesian 

geometry, the Helmholtz equation becomes 

d2     d2      2   ' 
dz2 + dx2+ko[z) p{x,z) = 0. (2.2) 

The pressure field must also satisfy the boundary conditions at the top and bottom of the 

water column. If the ocean depth is constant, the boundary conditions do not depend on 

x. Since k also is independent of range, the Helmholtz equation can be solved through sep- 

aration of variables. Here we use a Fourier transform method instead. Using the transform 

defined as 

/oo 
dkf(k,z)e-tl 

-oo 

1    f°° 
/(M)    =    ^J     dxf{x,z) Akx (2.3) 

the Helmholtz equation is reduced to 

^ + k2(z)-k2 p(k,z)=0. (2.4) 

This ordinary differential equation is known as the depth-separated wave equation. To- 

gether with the boundary conditions it constitutes an eigenvalue problem. If the boundary 

conditions are of several basic types (Dirichlet, Neumann, or Robin - see DeSanto [12, Chap. 

2] for details) then the problem falls into the Sturm-Liouville class, meaning the solutions 
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will have certain properties. Here we will only note that the solution consists of a series of 

n eigenvalues kn and eigenvectors, or mode shapes, Vn- The mode shapes are orthogonal, 

and are normalized over the ocean depth such that: 

L 
D -lpm{z)lpn{z) 

~fa) dz = 6™ (2-5) 

For some simple cases these eigenvalues and mode shapes can be found analytically, but in 

general numerical methods are required. For a Sturm-Liouville problem these modes form 

a complete set, meaning that any solution to the depth-separated wave equation can be 

found as a weighted sum of modes. 

The completeness property of the modes can be used to find a solution for the Green's 

function. The depth-dependent Green's function is defined as the transformed pressure field 

generated by a source of unit amplitude; mathematically it solves 

~ + kHz) - k2   Gu(k,z) = ~Ö-^-^l (2.6) 
2TT 

where the sound source is located at (x = 0,z = zs). Since the modes form a complete 

set, the Green's function can be written as a sum of modes. If 6(z - zs) is also expanded 

as a sum of modes, the mode orthogonality can be used to find the coefficients am for the 

Green's function, giving [38, p. 277-278] 

G   (k Z z)~ 1 V ^rn{zs)lpm{z) 
G^M,*.)-^^——-. (2.7) 

The Green's function can be thought of a transfer function for the acoustic waveguide. Since 

the waveguide is assumed to be a linear system, the sound field caused by multiple sources 

can be found by convolving the source distribution with the Green's function. 

The pressure field in the spatial domain is found by inverse transforming the wavenumber 

domain solution. If the acoustic source is of unit strength the spatial pressure field is simply 

the transformed Green's function. From the form of the Green's function given above we can 

see there are simple poles at k = ±km, the modal eigenvalues. These poles are shown in Fig. 

2.1. Physically the poles are resonances of the waveguide. Up- and down-going plane waves 

propagating at the modal angles interfere constructively, while waves propagating at other 

angles do not. The poles near the positive k axis correspond to waves traveling in the positive 

x direction, while the negative poles travel towards in the negative x direction. Attenuation 

with range is accounted for by having a complex eigenvalue, displacing the poles from the 
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real axis. For positive k the imaginary part must be negative: (k = Re(k) — a,a > 0), so 

e-ikx _ e-iRe(k)xe-ax shOWmg the field will attenuate as x -> oo. From similar arguments 

negative-traveling waves attenuate if Im{k) > 0 for k < 0. 

The wavenumber integral is evaluated by using simple contour integration. We calculate 

the field traveling towards x —> oo by replacing the line integral in Eq. 2.8 with the contour 

integral shown in Fig. 2.1. This contour extends along the real axis and is closed in the lower 

half-plane by a semi-circle C of radius R. Any contribution from C will be exponentially 

attenuated for positive x since Im(k) is large and negative along C. Thus the contour 

along C will give a negligible contribution compared to the line integral we are interested 

in evaluating. By Cauchy's theorem the integral around a contour is a sum of the residues 

of all poles inside the contour. Using the standard methods for evaluating the residues, the 

acoustic field is given by 

P(x, z) = -J2 ^a^tnMe-i^ (2.8) 

In underwater acoustics the pressure is usually normalized by the strength of the field at 

one meter. The normalized pressure field is [38, p. 276]: 

p(x> z) = V^^o-^) £ Mz.)Mz) e_ikmX (29) 

A similar form for the left-traveling modes can be found by enclosing those poles with a 

contour in the upper half-plane and going through the same steps. 

The discussion so far has considered only a two-dimensional (x,z) ocean with a line 

source. The same basic steps can be followed to find the pressure field for other geometries. 

For a three dimensional Cartesian (x,y,z) ocean the Helmholtz equation is changed by 

using the differential operator V2 = ^ + JLr + -§p- Using the two-dimensional Fourier 

transform defined as 

I       roo 
f(r,z)    =    ±J_J2kf(k,z)e-ikx 

1       roo 
f(k,z)   =   ±j^cPrf(r,z)eik*, (2.10) 

where r = (x,y) and k = (kx,ky), the depth-separated wave equation is found: 

d2 

0^2 +M2) ~k 
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This equation is used to find the eigenvectors and mode shapes. Since the horizontal 

wavenumber in the equation is squared, the eigenvalues found will specify the magnitude 

of k, but not the direction. Physically this corresponds to the fact that the vertical angle 

of the mode is set by the resonances of the waveguide, but the mode can travel at any 

horizontal angle. The normal modes again form a complete set, and an expansion of the 

Green's function as a sum of modes can be carried out, giving 

The pressure field in the spatial domain for a source, strength Su, at (f = 0,z = zs) is given 

by 

S    f°° 

For a point source and an ocean of constant depth, both the field and the environment are 

cylindrical^ symmetric. We use this fact to simplify the integral. We switch from Cartesian 

to polar coordinates, giving k = {kx, ky) -» (kcosO, ksinO), where k is the radial part of the 

wavenumber and 9 is the angle of horizontal propagation. For a receiver along the x axis 

f = (r cos 0,0), and the integral becomes 

P(r» = —y    dkk        d6G{k,z,zs)e-
ikcosex (2.14) 

Since G is not a function of angle the 6 integration can be carried out separately, giving a 

Bessel function of the first kind. The integral over k is carried out using contour integration 

techniques, exactly as in the 2D case, and gives a sum over the residues of the poles k = ±km. 

Combining these results and using the far-field asymptotic form of the Bessel function, we 

find 

IKyyiT 

This agrees with results given in standard texts. Normalizing the field to the pressure at 1 

meter gives 

P(r'Z) * ^)^ei{k°^lA)T,^rn(zs)^m{z)e~ (2.16) 

So far we have assumed the boundary conditions are of the simple types which give a 
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Sturm-Liouville problem. Unfortunately realistic boundary conditions for ocean bottoms 

are often not of this type. For example, the boundary conditions are often specified by giving 

the impedance of the boundary. In this case the eigenvalue problem is not Sturm-Liouville. 

The solution then consists of two parts: a discrete spectrum, which is a sum over modes, 

and a continuous spectrum. Physically, the continuous spectrum describes propagation 

at steeper grazing angles. If the sound is incident on the ocean bottom at angles larger 

than the critical angle, some energy is transmitted into the bottom. Because of the energy 

loss true resonances cannot exist, though damped resonances (sometimes termed pseudo- 

resonances or leaky modes) do exist. These leaky modes are seen in the complex plane as 

poles with large imaginary parts. In contrast, at grazing angles shallower than the critical 

angle, no transmission into the bottom occurs. Reflected waves do not lose energy, and 

proper resonances exist. These resonances are the normal modes (also called proper modes) 

we have discussed above. 

The continuous spectrum can only be exactly modeled using a wavenumber integration 

approach, but there are several ways to approximate its contribution. The simplest is the 

'false-bottom' method, in which a pressure release (Neumann) boundary is inserted deep 

in the ocean bottom. If there is attenuation in the bottom and the false bottom is deep 

enough, any reflections from this unphysical boundary will be attenuated and will not affect 

the solution. The pressure-release boundary converts the problem into a Sturm-Liouville 

problem. Generally a large number of false-bottom modes are found in addition to the 

proper modes. Summing these false bottom modes approximates the integral over the 

continuous spectrum. 

A more compact representation can be obtained by including the leaky modes in the 

complex plane. We note that the propagation of waves in the bottom is described by the 

vertical wavenumber kz, which is found from the horizontal wavenumber k through the 

square root function: kz = Jk2 — k2, where kf, is the medium wavenumber. Since the 

square root is a multi-valued function, it is necessary to chose a branch cut in the complex 

plane to get unique solutions. The Pekeris branch cut, which defines 

Kz     =      \l kfr       K   , K < K\) 

=   -i^k2-k2,k>kb (2.17) 

is shown in Figure 2.1. This choice of branch cut reveals the leaky modes, seen as poles 

with large imaginary parts. The contour integration shown in Figure 2.1 now encloses these 
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Figure 2-1: Contour integration in the complex plane, fast fluid bottom example. Proper 
modes are located close to the real axis between kb and kw; Pekeris branch cut is shown at 
k = ki,; leaky poles are exposed for k < kb. 

modes as well. The contributions to the contour integral from the two vertical cuts around 

the branch cut are in general small. The total field is then approximated as a sum of proper 

modes and leaky modes. 

For many problems the leaky mode sum can be used to give a good representation of 

the continuous spectrum. Problems can be encountered because the complex root finders 

used to find these poles are not always reliable. In addition, for the branch cut defined, the 

leaky mode amplitudes grow exponentially in the bottom. This means they cannot be used 

to represent the field in the bottom itself, though their amplitudes are bounded in the water 

column. Both leaky mode and false bottom approximations of the continuous spectrum will 

be used in this thesis. A more detailed mathematical discussion of the continuous spectrum 

contribution can be found in DeSanto [12]. 

2.2    Kuperman/Schmidt scattering theory 

The KS scattering theory has been presented in a number of publications [44, 45, 68], so only 

a brief overview is given here. Their work is a self-consistent perturbation scattering theory 

based on the pioneering work of Bass and Fuks [2]. The attenuation of the mean field due to 

scattering can be calculated, as well as the scattered field itself. One of the most important 

contributions made by Kuperman and Schmidt is the development of a compact boundary 

operator notation. This notation makes treatment of complicated elastic interfaces much 

more manageable, and is readily incorporated into the OASES wavenumber integration 

code.  The boundary operator contains the boundary conditions for the problem, written 
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in a matrix form.  For example, for a fluid-fluid boundary, the conditions of continuity of 

pressure and velocity can be written 

Bp = 0 (2.18) 

where the boundary operator is 

B = 
Pi dz 

.±A 
P2 dz 

(2.19) 

The top row of B enforces continuity of pressure at the interface, and the bottom row 

enforces velocity continuity. The vector of acoustic amplitudes is 

P 
Pi 

P~2 
(2.20) 

where p\ is the acoustic pressure field above the interface and p% is the field below. If there 

are isovelocity layers above and below the interface then the acoustic fields will be in the 

form of exponentials. The boundary operator then simplifies considerably, as -^ —> —ikz, 

reducing the boundary conditions to algebraic equations. 

The boundary conditions must also be satisfied at a rough interface. Here we consider 

a one-dimensionally rough surface in a two-dimensional ocean, but the full 3D case gives 

results of the same form [45]. The deviation from the mean interface is written as j(x), 

which by definition is zero-mean. We assume the statistics to be homogeneous, described 

by some correlation function 

N{x") =< i(x)7{x') > (2.21) 

where x" = x — x'.  The correlation function is related to the roughness power spectrum 

through the Fourier transform: 

<Y > 
l   r "     ,   ,   , " 

dx N{x )eipx (2.22) 

where < 72 > is the mean-squared roughness height. The boundary conditions on the rough 

interface must be satisfied at each point, using the local normal to the surface. If the slopes 
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are small (7  << 1) then these rotated boundary conditions can be written as 

B*p = Bp + -y' -bp (2.23) 

where b is a rotation operator accounting for the effect of the slopes 7'. 

The total acoustic field is then written as a sum of mean-field (coherent) and scattered 

field (incoherent) components. For an acoustic field this is written as 

p{x, z) =< p{x, z) > +s{x, z); (2.24) 

elastic displacement fields are written similarly. The rotated boundary conditions are then 

expanded in a Taylor series to second order, assuming the roughness parameter 7 is small. 

Since higher-order terms are neglected, multiple scattering is not included in the theory. 

The expansion results in two coupled equations, one for the mean field and the other for 

the scattered field. After some algebra the mean field equation is found to be 

h(k) + ^^-^B(k) + h(k) + I2(k)\ <p(k)>=0 (2.25) 

where the scattering integrals are 

™ = ^/_><-^^> 
J2(fc)    = ^-J^dqPiq-kftiiq-Q-biqKTilcq) (2.26) 

and T(k, q) is the transfer matrix from incident mean-field wavenumber k to the scattered 

field component q: 

f(k,q) = B-\q) (^W- - i(q - k) ■ b(k)) . . (2.27) 

The mean field equation describes the loss of energy from the mean field due to the perturbed 

boundary conditions at the interface. Note that if the roughness parameter 7 = 0 this 

equation gives the unperturbed problem. 

The scattered field in turn is forced by the mean field: 

1   r°° 
B(q)~s(q) = -^J_oodkj(q-k) d-^^(q-k)l(k) 
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where the right-hand side (RHS) is a forcing term describing the interaction of the mean 

field with the rough boundary. The RHS plays the same role as the physical source does 

for the unperturbed problem. The scattered field can be thought of as being generated by 

a distribution of "virtual sources" located at the rough surface. 

An equation of the form above can be implemented in the OASES code. However, for 

the normal mode approach the boundary operator is not used directly. The connection 

between the scattered field equation and the normal mode formulation is the subject of the 

next section. 

To make the use of the KS theory more clear, we consider the simple case of scattering 

from a rough interface separating two fluid halfspaces. This was the scenario studied by 

Kuperman [43] in his original paper. At the boundary between two fluids continuity of 

pressure and normal velocity are required. At the interface the continuity conditions are 

Pi    =   V2 
1 dpi    _     1 dp2 

pi dz p2 dz 
(2.29) 

The boundary conditions are expanded to include rotation terms, and the scattering ma- 

trices are identified as: 

B(q) 
1 

J-JL 
Pi dz 

-1 
.11 
Pi dz 

(2.30) 

and 

HQ) 
0      0 
ik      —ik 

L   p\ P2 

(2.31) 

(for more detail see the original article by Kuperman). The perturbation equations are then 

written 

—1   f°° 
«i (Q, A - «2 (q,z')    =    — dkj(q - k) 

ds~i{q,z')      pids2(q,z') 

d<p1(k,z')>      d<p2(k,z')> 
dz 

dz p2      dz 2n y_oo     /w       n dz2 p2 dz2 

+   (q-k)-k(^<p1(k,z')>-^<p2(k,z')>Sj} (2.33) 

(2.32) 

These terms can be evaluated if the mean field and the transform of the interface roughness 
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are known. The scattering is seen to be modulated by the transformed surface rough- 

ness at the difference wavenumber. This type of Bragg scattering result is seen in many 

developments of scattering theory. 

2.3    Modal formulation for two-dimensional waveguide 

In this section the basic scattering formulation is developed for a two-dimensional waveguide 

with a rough fluid-fluid boundary. Pressure-release or rigid boundaries can be treated as 

limiting cases of the fluid-fluid boundary. The formulation for waveguides with rough fluid- 

elastic boundaries is more complicated, and is shown in detail in Sect. 2.3.3, but the general 

form of the solution is the same as for the fluid-fluid case. 

The Helmholtz integral theorem states that the pressure field in some volume can be 

found in terms of an integral over the surface of the volume, given the values of the field and 

its derivatives on the surface. Mathematically, for a two-dimensional, Cartesian coordinate 

system and a sound wave of angular frequency a», 

+     /  dV(source) (2.34) 

where (x',z') denotes coordinates on the surface S', -^ is the derivative normal to the 

surface, and Gw(x,z \ x',z') is the Green's function evaluated at (x,z) for a source at 

(x',z'). As before we separate the acoustic field into coherent (mean) and incoherently 

scattered parts, giving 

p{x, z) =< p(x, z) > +s(x, z) (2.35) 

Substituting this into the Helmholtz integral formula shows that both the mean and scat- 

tered field must satisfy the integral equation separately. Since the source terms in the 

volume integral are all first-order, they will appear as sources to the mean field only. The 

scattered field satisfies the source-free Helmholtz integral and can be written 

six z)~  f dS'htr' ^dG^,z\x',z')      ds(x\z')„ 
1      ;~75'       [ l   '    ' dn' drf—G"(x>z\x'z)] (2-36) 

This integral is valid provided the Green's function is the solution of the wave equation 

everywhere inside the surface integral.   Thus it is valid in both the water column and 

43 



bottom, and across all smooth interfaces, since the Green's function satisfies the continuity 

boundary conditions. It will not be valid at rough interfaces, however, since the Green's 

function is found assuming all interfaces are smooth. To avoid this problem the surface 

integral must be deformed to run around any rough interfaces. 

As an example, Figure 2.2 shows a waveguide with a smooth surface and a rough fluid- 

fluid bottom interface. From the radiation condition the pressure at x = ±00 goes to zero, 

so the vertical parts of the surface integral will disappear. There is therefore no difficulty 

deforming the integral to cross the rough surface and run back along the other side as 

shown. Since the direction of the surface normal changes, the integrand will change sign 

across the interface. The integral also disappears along all smooth interfaces, since the 

Green's function and the mean field are proportional. The scattered field can then be 

written in terms of the two line integrals back and forth along the rough surface. Written 

out with an explicit notation, this is 

s{x,z)   =    I     dx'[si{x',z')       dz, '- ^ G\'{x,z \x,z)] 

r J —1 

,(2) 00     ,        ,   , dG\ >(x,z I x',z')     ds2{x',z')   (2),       ,   /   M1 ,0 Qr. 
dx'[s2{x',z')— ' - -z-, Gy{x,z I x ,z)\ (2.37) 

dz' dz 

The notation used here is that Si is the scattered field in the water (medium 1) and s2 is the 

scattered field evaluated in the bottom. The subscript on the Green's function indicates the 

medium in which the field is sampled, while the superscript denotes the medium in which 

the source is located. Depth derivatives are assumed to be taken from the appropriate 

direction - in other words ^J- is the derivative of the scattered field in medium 1, taken 

approaching the interface from above, while ^ is the derivative taken in the sediment 

approaching the interface from below. 

This integral can be simplified using the reciprocity theorem and continuity conditions 

for the Green's function. Since we are usually interested in the scattered field in the water, 

the integral is rewritten in terms of mode shapes and sources in the water. The continuity 

conditions across the interface for the field generated by a source in the lower medium give 

G? I z'   =   G2
2) I z' (2.38) 

(2) 1 ^(2) 1 8GY' .   , \dG\ 
z 2    1 j z' (2.39) 

P\   dz p2   dz 

while the reciprocity theorem for exchanging the source location between medium 1 and 
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Figure 2-2:   Helmholtz integral theorem for penetrable bottom.   The surface integral is 
deformed to run along both sides of the rough surface 

medium 2 gives [38, App 2A] 

Pi G™ = p2G& (2.40) 

The terms coming from the integration below the interface can be rewritten using the 

continuity relations and reciprocity. Reverting to the earlier notation and writing GbJ = 

Gx   , the scattered field is given by 

s(x,z)    =     f°° dx'[(,,(^ ,') _ .=(„/ ~>))dG*>(x,z 1 x',z') 
J—oo Qz' 

a*'       p2    &?—>GUx,z\x,z')}. (2.41) 

This intermediate result shows that the scattered field is forced by the discontinuities in 

the boundary conditions at the rough interface. As the previous section showed, these 

discontinuities fall out of the KS perturbation theory in a natural way. Before the KS 

results can be applied, the Helmholtz integral must be transformed to the wavenumber 

domain. Carrying out the transform gives (see App. A.l) 

Hq,z)    =   2n[(s1(q,z)-s2(q,z))^^±l 
dz' 

~    ( 
dh(q,z')      pids2(q,z') 

dz' (>2 
-Q£ )Gco(q,z,z')} (2.42) 

The discontinuities in the scattered field and its derivative at the rough interface, found 

from the KS theory, act as forcing terms for the scattered field. 
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The discussion so far has dealt with fluid-fluid rough interfaces only. For scattering 

problems involving elastic layers there will be 3 or more boundary conditions. The integral 

equation is more complicated, involving shear and compressional potentials in the bottom. 

In general, though, the scattered field equations are of the form 

~s(q, z) = 2^[A!(g)d°wfj' * ] - A2(g)GM(g, z, z% (2.43) 

where Ai is the discontinuity in the scattered field across the rough interface, and A2 

represents the discontinuity in momentum. 

The remaining steps are to use the KS theory to find the forcing terms Ai and A2, and 

to write the Green's function and the incident pressure field as modal sums. Section 2.3.2 

shows these steps for fluid and impenetrable boundaries, and section 2.3.3 shows the results 

for a rough elastic halfspace. In both cases the transformed scattered field can be written 

in the general form: 

*■*> -<&L"X*<-k™w?mF=ä       (2'44) 

where 

p{z)P[Zs) 
A^Hq,k)^l + AgHq,k)Mz') (2.45) 

Here NM is the normalization to the field at 1 m., and comes from the normalized incident 

field. The poles at k = ±km and q = ±qn show that both the mean and scattered fields 

travel in the resonant modes of the waveguide. The terms inside the ^-integral represent 

the transfer from incident k to scattered wavenumber q. 

2.3.1    Spatial domain solution 

The scattered field in the spatial domain is found by inverse transforming the result for s 

above. Since 7 is a Fourier transform, we can write it explicitly. The scattered field is then 

given by 

1      f°° s(x>z)    =    7Tl2  /      dqs{q,z)e  iqx 

\l-ny J-00 

= TTä r r r dqdkdx'Ysiix'v^-^'M*) 
\ZTV)       J — CO J—OO J — OO TI  m n,m 
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The integrand has simple poles at q = ±qn and k = ±km, where the positive poles corre- 

spond to forward-propagating waves (bounded as x -> oo), and the negative poles corre- 

spond to back-propagating modes (bounded as x -> —oo). The integrals over q and k can 

be evaluated as a sum of residues using Cauchy's theorem. In doing so, we must be careful 

to pick the correct poles for the physical situation we are considering. 

We begin by first considering scattering from the mean field traveling out from the 

source to the right, then use symmetry to include scattering from the left side of the source 

as well. The poles at k = km correspond to the right-going waves. The equation above 

shows that, for x' > 0, we can close the contour in the lower half-plane. Evaluating the 

integral as a sum of modes gives: 

The outgoing field can scatter either forward or backward: 

Forward scatter 

We first examine a bistatic geometry, with the receiver located some distance away from 

the source. Sound interacting with the rough bottom at ranges x' < x can scatter forward 

to the receiver. These contributions are found by enclosing the positive qn poles, giving 

sf(x,z) = ^ £ rdx'Wy^-^Mz)"""fr'km)e~^x. (2.48) 27r n,m Jo 4kmqn 

To simplify the notation, we define the forward-scattering coefficient fnm to be 

r       _ anm{qn, km) 
Inm ~   Jin, ^lAy> 

Writing the complex eigenvalues as km = km - iam, etc., helps make the effect of mode 

attenuation more clear: 

sf(x, z) = ^rf dx\1{x')e-^am-a^x'ei^-'km^'Un{z)fnme-anXe-i^x.       (2.50) 
27r n,mJ0 

This expression models propagation of mode m forward to a scattering point x', and then 

further forward propagation in mode n to the receiver. The different attenuation rates of 
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the two modes are accounted for by the e  (Qm  Q")1' term. 

Backward scatter 

In a bistatic experiment rough surfaces at ranges beyond the receiver (x' > x) can scatter 

backwards to the receiver. These waves are found by enclosing the negative q poles, giving 

*b(x,z) = ^ E rdx'[7(xy^-^^]tl,n(z)^m{~^km)e^x. (2.51) 
2lT wJx -4kmqn 

The notation is simplified by defining the backscattering coefficient as 

, anm(~Qn,km) /o co\ 
Onm =  T7  (2.52) 

QKmQn 

If the attenuations are again written explicitly, we have 

1 f°° -    - 
sb{x, z) = —Ydj    dx'hWe-*»^ -*)e-

amX ]ei(-»"-*™)x,]V'n(2)6nmei5"a:.       (2.53) 
27r n,m Jx 

We will show in Chapter 4 that, for rough surface scattering, the forward-scattered field is 

nearly always much stronger than the backscattered field. For a bistatic experiment this 

means that backscattered energy from beyond the receiver can often be neglected. 

Backscattering is measured directly in monostatic experiments, with the source and 

receiver located at the same range. For monostatic backscatter we need to include scattering 

from x' < 0. From physical arguments the backscattering should be symmetric about x' = 0. 

Mathematically, we will see from the sections below that the scattering coefficients obey 

the symmetry relation: anm(—q, k) = anm(q, — k). The total backscattered energy is then 

1 f°° 
sb(0, z) = ^-J2        [7(z>-(Q"+Qm)|lV(-*"-fc™)*']^(.z)6nm (2.54) 

Z7r n,mJ-°° 

Mode m travels away from the source, attenuating as it travels, until it back-scatters at 

some range x' into the backward going mode n. Mode n then attenuates as it travels 

back to the receiver, giving the total attenuation shown. Since the attenuation sum rather 

than difference is what is important here, we expect attenuation to have a much stronger 

effect. Attenuation must be included in the system in order to avoid unphysical results. If 

there is no attenuation in the system, scattering from rough patches infinitely far away will 

propagate to the receiver, causing the scattered field to diverge. 

So far all the calculations presented have been for a two-dimensional (x, z) ocean. Scat- 
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tering in a fully three-dimensional ocean is a much harder problem, but could be approached 

in the same way. As an intermediate case we consider the scenario in which both the en- 

vironment and the roughness are axisymmetric, so there is no out-of-plane scattering. As 

shown by Schmidt et al. [69] and detailed in Appendix A.7, the solution of the Helmholtz 

equation in cylindrical geometries can be related very simply to the 2D Cartesian solution. 

To a good approximation, the effects of the cylindrical geometry can thus be taken into 

account by multiplying the 2D Cartesian result by a factor of ^2/nr. 

2.3.2    Scattering terms for rough fluid and impenetrable boundaries 

In section 2.2, the results of the KS theory for a rough fluid-fluid interface were shown. The 

forcing term shown there can be expressed in terms of normal modes by using the modal 

expansion for the mean field and the Green's function. 

The Ai term is simply the jump in scattered field pressure across the rough interface. 

If the mean field is given as a sum of modes, and the result from section 2.2 is simplified by 

using the fact that the mode derivatives above and below the interface are related by the 

ratio of densities, the Ai term becomes 

The A2 term is the jump in the derivative of the scattered field. It is simplified by rewriting 

the second derivative using the Helmholtz equation, and by using < pr >=< p2 >. The 

result is 

A2(9) = (g^- f dkE7(g - k) k - a*» - qkmii - £)] *^->y > 
\L-K)   PlJ-co m L p2 ■ P2   J kl - kfn 

These forcing terms are used to find the reverberant field as outlined above. 

Many authors have developed scattering theories for simple impenetrable boundaries, 

such as rigid or pressure release surfaces [30, 26]. These boundaries are limiting cases of the 

fluid-fluid boundary. The results for a rough pressure release surface are found by taking 

the limits as p2 ->• 0, < p(z') >-> 0. The transformed scattered field in the water column is 
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then given by: 

-NM     [<*■ JLV^_,      ..^(frWkC) <MZ.M.(0) „,» 
^-p^w/--*.?7''-*'-^^—?^^r       ("7) 

Thus the scattered field depends only on the derivatives of the field at the rough surface. 

This result can be shown to be exactly equal to that derived by Harper & Labianca [30] in 

their paper on mode coupling due to a rough pressure-release surface. 

Similarly the results for the rigid boundary can be obtained by letting pi —> oo and 
d<^z

> |z/-> 0. The resulting scattered field is 

-1   f°° ( d2 \ 
%,*')    =    — J^dk^(q-k)i^ + {q-k)k\<p{k,z')> 

= (2^wL*S7(' )IM')"^^^—?^2-58) 

The field now depends on the values of the modes at the rough interface. It is interesting to 

note that the term introduced by the rough surface slopes is proportional to q — k. As the 

slopes increase this term will become more important, and backscattering can be expected 

to grow. 

The simple case of an ideal waveguide, an isovelocity ocean with a pressure release 

top and bottom boundary conditions, is treated in Appendix A.3. The top boundary is 

assumed to be rough. The scattered field calculated using the modal scattering theory is 

shown analytically to agree with the results of the wavenumber- domain based KS approach. 

2.3.3    Scattering terms for a rough elastic halfspace 

In this section the scattering theory is extended to deal with a rough elastic ocean bottom. 

Because of the added complexity of the fluid-elastic boundary, we limit ourselves here to 

considering scattering from an elastic halfspace. This simplification reduces the calculations 

needed considerably. 

The fluid-elastic boundary conditions are formulated starting with the equations of 

motion for the elastic medium. The equations of motion, stress-strain relationships, and 

Hooke's law for isotropic elastic media are presented by many authors, for example Doyle 

[14, p. 158], and are summarized in Appendix A.4 For the two-dimensional case we make 

the two assumptions that there is only in-plane strain (i.e. all out-of-plane derivatives are 

zero) and that there is no out-of-plane motion. 
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In the elastic halfspace we have only down-going waves, since the source is in the water 

column. If the fluid-elastic interface is at Zi, the transformed compressional potential <j> and 

shear potential ip are given by 

4>(k,z)    =    Ce->(2"2i) 

i>(k,z)    =   De-^z-Zi^ (2.59) 

where jp = Jk2 — k2 and js — yjk2 — k2. 

At the fluid-elastic interface three boundary conditions must be satisfied. The first is 

the continuity of normal stress (negative of pressure); second is continuity of displacement; 

and third, the tangential shear axz must be zero at the interface, since water cannot support 

a shear force. To set up these boundary conditions we must write the stresses and displace- 

ments in the elastic bottom in terms of the velocity potentials. Prom Hooke's law and the 

stress-strain relation azz and axz are found, as shown in Appendix A.4. The boundary 

conditions for the unperturbed problem are then gathered together in matrix form. If the 

field is expressed in terms of modes, the boundary conditions become 

B{km) 

1pm{zi) 

= 0 (2.60) 

where B(k) is a 3 x 3 matrix, shown in the Appendix. Here ipm(zi) is the value of the mode 

shape at the fluid-elastic interface, Cm is the amplitude of the down-going compressional 

plane wave, and Dm is the amplitude of the down-going shear plane wave. 

KRAKEN [66] does not give mode shapes inside the elastic bottom, but from the mode 

shape in the water we can find ijjn and if>n at the fluid-elastic interface Z{. These boundary 

conditions are used to solve for the unknowns Cm and Dm in terms of the mode shape in 

the water, as shown in Appendix A.4. To account for attenuation in the bottom, we include 

an imaginary part of the bottom shear and compressional wavenumbers: 

Kp      =     Kp[l       10p) 

ks   =   ks(l-iös) (2.61) 

The imaginary parts S are found by dividing the shear and compressional attenuations 

given in units of dB/\ by a conversion factor (approximately 54.58) [38, Chap. 2]. Thus, 
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to find the incident field strength, the eigenvalues and mode shapes in the water are found 

numerically and are used to estimate Cm and Dm. The complex medium wavenumbers are 

used to find the plane wave attenuations. 

The scattered field forcing terms can now be calculated. The boundary operators    Q~ 

and b(k) are found by expanding the boundary conditions, and the forcing terms for the 

KS theory can be calculated.  The resulting terms do not add much physical insight, and 

are given in the Appendix. 

When studying rough fluid-fluid interfaces, we used reciprocity to rewrite the Helmholtz 

integral theorem in a form which directly gave the scattered field in the waveguide. Such 

an approach is possible for the fluid-elastic interface, but the fluid-elastic reciprocity rela- 

tionship is quite complicated. To avoid this difficulty an impedance method used earlier by 

Kudryashov [42] is modified for use here. 

The scattered field equation is a set of three coupled equations, representing the three 

boundary conditions. These equations can be manipulated into an impedance form, giving 

s(q,Zi) - Z0(q)^^- = Gs(q). (2.62) 

s(q,Zi) is the scattered field in the water, evaluated at the fluid-elastic interface Z{. The 

forcing term for the scattered field is 

{2iryp{za) Jo V k   - km 

The exact forms of Am, Am , and the boundary impedance Zo(q) are shown in Appendix 

A.4. A solution to this equation can be written down by inspection, following Kudryashov: 

where 

„(q) = s(qiZi)-Zo(q)^^>l. (2.65) 

Here ip(z, q) is the solution to the homogeneous depth-separated wave equation, and satisfies 

and the boundary conditions at all smooth interfaces (e.g. the ocean surface when bottom 

scattering is considered). As a check, the solution for s results in an identity when inserted 

in the scattered field boundary condition and evaluated for z — Z{. Finally we transform s(q) 

52 



to find the scattered field in space. The function ir(q) is basically the impedance boundary 

condition for the mean field, and is zero at the wavenumbers q = ±qn of the unperturbed 

solution. At these wavenumbers ip(z, q) becomes by definition the unperturbed mode shape 

i()n(z). Summing the residues, the forward scattered field is found to be (see App. A.4) 

Sf(xz)   -    
NM   rdg'y7(sV(qn-*m)s'!Mf) 

[A$(qn,km)^ \Zi +A%\qn,krn)i;n(zi)] 
Zinjj] 

e~iQnX (2.66) 

This equation is in the same form as the general result found earlier, demonstrating the 

equivalence of the the two approaches used. The one difference is in the factor of p(z') 

missing here, which before came from the Green's function. Since the water density is 

generally set to unity this difference in definition is not important. 

To find the backscattered field, the negative poles q = —qn are enclosed in the contour 

integration. The backscattered field at the source range is given by 

sjn z\    -       NM     (°° dr' V -,,(T')r-(^+am)\x'\ i(-gn-km)x' ^n{z) 

[A^i-q^km)^ \Zi +A$(-qn,krn)ipn(zi)] 
Zkm 

(2.67) 

2.4    Statistical measures of scattered field 

The results presented in section 2.3.1 allow us to calculate the scattered field in the waveg- 

uide for a specific realization of the interface roughness. This can be extremely useful, for 

example in generating synthetic time series for comparison with data. No approximations 

other than the basic ones of small roughness height and slope have been made, so within 

the limits of the perturbation theory the results can be considered, to be exact. 

In this thesis we focus instead on calculating second-moment expectations of the scat- 

tered field, which can give quick insight into the scattering physics. To do so we describe 

the interface roughness in terms of a power spectrum P describing the amplitude distri- 

bution of roughness at different length scales. Several different types of spectra may be 

used to describe the roughness. Gaussian spectra are often used, largely because of their 

analytic simplicity, but for many surfaces power-law distributions such as the Goff-Jordan 

spectrum [25] seem to be more realistic as they include roughness on many length scales. 
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Wavenumber (1/m.) 

Figure 2-3:   Goff-Jordan spectrum (solid line) and Gaussian spectrum (dashed) for 1 m 
RMS roughness, 20 m. correlation length 

The Gaussian spectrum is defined as: 

P{q) = V2^Le~{vL) 
(2.68) 

while the Goff-Jordan spectrum is given by: 

P{q) = irL [(pL)2 + lj 
-1.5 

(2.69) 

where L is the correlation length. Examples of both spectra, in a dB scale, are shown in Fig. 

2.3 for a roughness correlation length(CL) of 20 m. The main difference is seen to be that 

the Goff-Jordan spectrum contains much more energy at large wavenumbers, corresponding 

to small-scale roughness. 

To use the power spectrum, which is a wavenumber-domain description of the roughness, 

we must transform the spatial integrals over roughness j(x') in the scattering expressions to 

the wavenumber domain. In this section we show how this works for both the forward- and 

back-scattering cases. The results obtained are used to define other second-order statistics 

defined in the following sections. 

In section 2.3.1 we showed that the equation for forward-scattering involved an integral 

over the rough boundary x'.  Any second-moment statistics will involve a double integral 
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over the rough surface. This double integral takes the general form: 

h   =    /      /     dx'dx" <J{X')J{X") >e
i^-k^x'e-i^'-k^'x" (2.70) 

Jo    Jo 

We next assume that the roughness is statistically stationary, so the correlation function 

< j(x')^/(x") > depends only on the separation y — x' — x". Changing variables to sum 

and difference coordinates, defined as 

y   =   x' — x" 
x' + x" ,       , 

r   =    —g—, (2-71) 

the second-moment expectation can be split into two parts: 

h=[ dyN{y)ei 2 J   )(/ drS^~k^-^-k^T\ (2.72) 

where N is the roughness correlation function. We examine each of these integrals sepa- 

rately. 

In evaluating the integral over y several simplifying assumptions must be made. First, 

for almost all cases, x\ and X2 will be much larger than the correlation length. Thus we 

can extend the limits of integration over y to ±oo. Second, we note that as the modal 

attenuations become small, the integral over y approaches the Fourier transform of the 

roughness correlation function, as defined in Eq. 2.22. The difficulty in applying this 

definition is that the wavenumber argument to the power spectrum in Eq. 2.22 is real, while 

the exponential argument in Eq. 2.72 is complex. To work around this difficulty, we not that 

the correlation function gives its main contribution to the integral for separations y which 

are on the order of the correlation length or less. If the differences in mode attenuations are 

small enough that the exponential growth or decay is small over the. distance of a correlation 

length, i.e. 

e-{{am-an)+{oip-OLi)}CL ^j ^ 73) 

then the imaginary part of the wavenumbers can be neglected. The small slope approxi- 

mation made in the perturbation theory ensures that each mode will scatter most strongly 

into the nearby modes. Since nearby modes will have comparable attenuations, the approx- 

imation above should be reasonable. 
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Carrying out the second integral, over r, gives the total second-order expectation as: 

I  = 2-n < a2 > P (^-k^ + jqi-kj,)) e<[(gn-*m)-(ft-*p)-](si+x2)/2 - l 
2 V 2 /       iKln ~ km) - (qi - kp)*] [ ■    > 

For most combinations of modes, the oscillating exponential will reduce the contribution 

to the integral. The largest contributions are expected to come from the combinations 

(n — m,l = p oi n = l,m = p) for which the phase of the exponential is constant. These 

scattering paths give contributions on the order of x, accounting for the increase of the 

scattering surface with range. 

Expressions for the back-scattered field in the waveguide were also found in section 2.3.1. 

Second-moment expectations for the backscattered field will also involve double integrals 

over space, and can be treated using the methods above. The backscattered field in a 

bistatic geometry was shown to include a spatial integral of the form: 

/■oo 

h = /    dz'iCzV*-9"-*"0*'- (2-75) 
Jx 

The second-moment expectation can be shown to be 

I  = -27T < a2 > P ((-^-k~m) + (-Qi-Qp)) e'f(-9"-fc™)+fa+fcPr](*i+*2)/2 
2 \ 2 J   i [{-gn - km) + (qi + kp)*}        [ '    j 

A monostatic scattering geometry is a special case of the result above, with both receivers 

located at x = 0. The scattered field is found as an integral over all space. The largest 

contributions again come from the modes n — m,l = p and n = l,m — p. The second term 

above then becomes 

(2.77) 
an + am + ai + ap 

This shows that the monostatic backscattered field will become infinite if there is no atten- 

uation in the system, since scattering patches infinitely far away can contribute to the total 

energy. A similar result was found in modeling the ambient noise field generated by surface 

noise sources [38, Chap. 10]. 

The ability to perform the spatial integrals over x and x analytically rather than 

numerically lies at the heart of the efficiency of the modal approach. The result is that the 

computation time for the modal formulation is independent of range. The computation time 

grows quadratically with range for the wavenumber integration implementation of Schmidt, 
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as seen in Chapter 4. 

In the next sections we define a number of different statistical measures of the scattered 

field which are helpful in understanding the scattering process and waveguide physics. Gen- 

erally these can be lumped into estimates of the energy distribution and coherence among 

modes, and estimates of the energy distribution and coherence in space. 

2.4.1    Cross-modal expectations and expected modal power 

Here we calculate the second-moment expectations of mode amplitudes, for both the scat- 

tered and total fields. These are the most basic statistics to calculate, since nearly all 

other measures of the scattered field can be written in terms of the cross-modal amplitude 

expectations. 

For the mean field the definition of the cross-modal expectation is quite simple. As seen 

in section 1, the mean pressure field with a unity strength source is given by 

p{x,z)    =    -^—YJ^
z^rn{z)e-ikmX 

=     J2drni>m(z)e~ikmX (2-78) 
m 

The cross expectation between modes n and I is simply dndjf. 

The cross-modal expectations for the scattered field are found using the results obtained 

earlier. From Eq.   2.50 the forward-scattered mode amplitude is identified as 

«»(*) = ^-H[X dx'1{x')fnmS*>-k>»V. (2.79) 

The results in section 2.4 are used to find the the cross-modal correlation for the forward- 

scattered modes: 

<an(X)aUX)>    =    <^>Sp(^-^) + fa-MV 

ei[(gn-km)-(gi-kp)*]x _ j 

i[(qn ~ km) - (Ql - kp)*]fnmf^ (2'80) 

Results for the back-scattered modes can be found in a similar way. For example, the 

cross-modal expectations for the backscattered field at x = 0 are given by: 

<M0K(0)> =  <^>Ep^-U + (-qi-fcp)y 
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ibnm{blpy 

(-Qn ~ km) - {-qi - kpY 

For the case n = I the modal amplitude expectation is simply the expected modal power 

for mode n. For long ranges almost all the contribution will come from the coherent terms 

m = p. 

These expressions already give some insight into the scattering process. The roughness 

power spectrum P(q) will have its maximum at q = 0, and the power spectrum width 

decreases as correlation length increases. For very short correlation lengths the power spec- 

trum will be very broad, so the power spectrum is nearly constant over the range sampled. 

In this limit scattering will be basically isotropic and the forward and backscattered fields 

will be equally excited. As the correlation length increases, the scattering will become more 

forward directed. The difference argument to the power spectrum for the forward scattered 

field will be closer to zero than the wavenumber sum seen in the backscattered mode am- 

plitude expression. As the correlation length becomes very large, the power spectrum will 

approach a delta function around the incident wavenumber. Each incident wave will then 

scatter only into angles very close to the incident angle. Physically the large correlation 

length means that energy will be coherently scattered from many ranges along the bottom, 

adding up according to the phase of the incident field. 

2.4.2    Cross-modal coherence 

Cross-modal coherence has proven to be a useful measure for describing modal fields. For 

example, Polcari [65] estimated coherence between modes from long-range Arctic trans- 

mission data taken from the FramlV experiment in 1982. The normalized cross-modal 

coherence between modes n and I is defined 

Tnl{x) =    \<°*(*)*n*)>\ (282) 
V<l al(x) \><\ af{x) |> 

The modal amplitudes calculated above are used. The normalization terms are equal to the 

expected modal powers. 

It is more practically useful to find the cross-modal coherence for the total field, since 

this is more easily measured in experiments. The total forward traveling field is found by 

summing the mean field and forward scattered field: 

P(x,z) = Y, 27r ™ A) 
$n{zy     nX (2.83) 
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(although the scattered wavenumber is usually denoted by q, k is used here to emphasize that 

the same modes are summed). Since the mean field and scattered field are incoherent, the 

total field cross-modal expectations are found by adding 2.80 to the mean-field expectation 

{dndl). If the scattered field is zero, the acoustic field is totally coherent and Tnl will be 

one for all n and /. In general the normalization insures that all diagonal elements will be 

one, meaning each mode is coherent with itself. The value of off-diagonal elements shows 

the loss of coherence in the field due to scattering. 

2.4.3    Power spectral density 

The power spectral density is a powerful measure which helps in understanding the distri- 

bution of scattered energy with wavenumber. It is defined as 

PSD{q) =< s{q,z)s*(q,z) >, (2.84) 

and is the expected level of energy scattered into each wavenumber q.  It can be directly 

found from a second-moment expectation of Eq.   2.44. 

First we calculate the power density for sound scattered from a single incident plane 

wave with wavenumber kinc. The wavenumber integral over k then collapses to a single 

point. Calculations in Appendix A.5 show that the power spectral density is 

PSDplanM = <^> £ Pfo _ hnC) | ^(*)        ^ffiy P (2.85) 
v      ;      n,m \r*inc      Km)\(l   ~ Qn) 

2.4.4    Spatial statistics and expected intensity 

The sections above defined statistics useful for understanding the distribution of energy and 

coherence among modes. In this section statistical measures are defined which show the 

energy distribution and coherence in space. 

The basic measure defined here is the spatial correlation of the scattered field. The 

spatial correlation is the second moment expected value of the scattered field, sampled at 

two receivers (xi,zi) and {x2,z2): 

Cs{xi,zi,x2,z2)    =    <s(x1,zi)s*{x2,z2)> 

=   Y,<ana*l>MziWi{z2)e-iq^ei*ix* (2.86) 
n,l 

The results above for the cross-modal amplitude expectation are used in calculations. 
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The spatial correlation of the total acoustic field is found from the cross-modal expec- 

tations for the total field. It can be shown to be (again writing the scattered wavenumber 

using k instead of q) 

Ctot{xi,z1,x2,z2)   =   YJdnd*li>n{zl)^l{z2)e-
ik^eikiXi 

n,l 

+    E E < a"a* > MziWiMe-^eW3» (2.87) 

The spatial correlation can be used [68] to define several other measures for either the 

scattered or total fields, including the normalized correlation 

c     _ Re[Cs{xi,z1,x2,z2)] 

y/Cs(xi,zi,xi,zi)Cs(x2,z2,x2,z2) 

and the spatial coherence 

n*    - I Cs(xuzux2,z2) [2 

PSij - 7T7 T777 r (2.89) Cs(x1,zi,xi,zi)Cs{x2,z2,x2,z2) ' 

Finally, the expected intensity is simply the spatial correlation with the two receivers placed 

at the same point: 

< I(x, z) >= Cs(x, z,x, z) (2.90) 

2.5    Backscattered intensity vs. time 

The calculations shown above have all assumed that the incident field is generated by a 

continuous wave, single-frequency source. Response to an incident pulse can be found by 

Fourier synthesis, but is computationally very intensive. To avoid this problem, several 

authors [88, 17] have developed approximate solutions for scattering, assuming the incident 

pulse is narrow-band but of reasonably short duration. A similar approach, starting from 

the scattering theory developed above, can be used to calculate backscattered energy from 

a narrow-band pulse as a function of time. 

The scattering geometry is shown in Fig. 2-4. A sound source is located in a cylin- 

drically symmetric ocean at (r = 0,z = zs). A vertical array at the source range measures 

backscatter. We assume a narrow-band pulse of duration T is broadcast from the source. 

The energy in the outgoing mode m travels away from the source at Cm, the group velocity 

for the center frequency in the pulse.   Sound scattering out of mode m into mode n at 
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Figure 2-4: Modeled backscattering geometry. A narrow-band pulse is transmitted from a 
source, and backscattered energy is received on an array at the same range. 

some range r' along the rough boundary will travel back to the source with group speed 

Cn. Relating travel time to distance through the modal group velocities, we can find the 

area along the bottom which contributes to backscatter as a function of time. At any given 

time, the received backscattered energy comes from a series of annuli centered around the 

source. 

In this chapter the results obtained have been for two-dimensional environments. For 

cylindrically symmetric (r, z) environments the assumption made is that out-of-plane scat- 

tering can be neglected. The scattering scenario in Fig. 2-4 is three-dimensional, but 

the theory developed above can be applied if the roughness is assumed to be cylindrically 

symmetric. The change of variables discussed in Appendix A.7 is used to transform the 

problem to a 2D one. A solution for the two-dimensional problem is found (see Appendix 

A.6), and the change of variables is applied again to give the result for the cylindrically 

symmetric ocean. 

For the m ->• n scattering path, the center of the insonified annulus at time t is 

rnm(t) = (t-T/2) 
CjjCfl 

Cn T Cm 
(2.91) 

The limits of the annulus are given by [n,r2} = [rnm(t) - Arnm,rnm(t) + Arnm], where 

(2.92) ^rnm — 
T     CmCn 

*• Cn + Cn 
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This relationship can be used to find the backscattering as a function of time. In section 

2.3 the backscattered field generated by a continuous source was calculated for a plane 

geometry. Applying the scaling factor for the cylindrical ocean and integrating over the 

insonified area gives 

sb(z,t)    =    J2 r*dr,\f^n(r')e^+a^rVt-*»-*»)'-'ißn(z)bnjn. (2.93) 
n,mJ-rl V 7rr 

The backscattered intensity as a function of time is found from the second-moment 

expectation of this equation. The calculations involved are shown in Appendix A.6. In 

carrying out the calculations, several assumptions are made. First, only the coherent terms 

in the modal summation (n = /, m = p) are retained. The other, off-diagonal modal terms 

are not expected to influence the overall scattering energy much. Secondly, the pulse is 

assumed to be short enough that attenuation across the insonified area Arnm is small. If 

these assumptions are made, the expected intensity is given by: 

e-2(an+Qm)rnm(t) 
< Ib(t, Z)>     =     <Y>J2 P(-<ln ~ k™)Arnm —  

n,m rnm(t) 

I 4fn(z)bnrn |2 . (2.94) 

The backscattered intensity depends on the power spectrum and scattering amplitudes 

calculated previously. In addition, it is proportional to the width of the insonified area. 

Attenuation and cylindrical spreading of the wave as it travels to and from the insonified 

area at rnm(t) are taken into account. This result is very similar in form to the result derived 

by Ellis; the main difference is that the scattering amplitude bnm above is found from the 

physical properties of the bottom, while Ellis uses an empirically determined coefficient in 

Lambert's law. 

In comparing numerical results, it is convenient to normalize the energy in the pulse. 

This is done by setting the pulse amplitude to 1/T. 

2.6    Summary 

The theoretical work in this chapter has shown how rough surface scattering theories can 

be combined with the integral theorem to calculate ocean reverberation. Excitations for the 

normal modes of the scattered field were found, and used to calculate the ensemble statistics 

of the scattered field.   The important contributions of the chapter can be summarized 
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in a few points. First, the elements of the modal transfer matrix are found from first 

principles. No empirical constants or phenomenological descriptions of the scattering were 

used. Second, using the KS theory to find the modal excitations allows us to deal with 

more complicated interfaces. The results presented here for scattering from a rough elastic 

bottom are, to the author's knowledge, the first time bottom elasticity has been included in 

a modal scattering theory. Third, the field is written as a coherent sum of modes, retaining 

phase information about the interference pattern of the scattered field. Lastly, expressing 

the ensemble statistics of the scattering in terms of modal sums rather than wavenumber 

integrals greatly reduces the computational work required. 
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Chapter 3 

Volume scattering in ocean 

waveguides 

The previous chapter has examined the scattering of sound by roughness at interfaces 

between different layers in the ocean. Sound is also scattered from inhomogeneities in the 

volume of the ocean. In the water column internal waves and other oceanographic processes 

perturb the ocean, giving rise to small fluctuations in the sound speed and density of the 

water. As discussed by Chernov [11] and others, the density fluctuations in the water are 

generally much less important acoustically than the sound speed fluctuations and can be 

neglected. The ocean seabed is also characterized by random fluctuations in density and 

sound speed; however in this case the density fluctuations cannot be ignored and are often 

dominant [86, 31]. Scattering from density fluctuations tends to greatly increase the back- 

scattered energy, as is illustrated below. These effects can be especially important for low 

frequency shallow-water propagation, which tends to be dominated by bottom interaction. 

In this chapter we develop new methods for modeling volume scattering in the ocean. In 

the first section, a new, self-consistent theory for scattering from random sound speed and 

density fluctuations in a three dimensional ocean is presented. This work allows calculation 

of the mean field attenuation due to volume scattering. The statistics of the scattered field 

in the waveguide are also found. 

The next two sections concentrate on scattering of low-frequency sound from random 

layers in fluid sediment bottoms. First we model the scattering from a plane wave incident 

on the ocean bottom, without taking waveguide effects into account. Numerical examples 

are used to show the different effects of sound speed and density fluctuations over a range of 

parameter values.  Although predicted qualitatively earlier by Chernov, the results shown 
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help to develop a physical intuition about bottom scattering. They also show that out-of- 

plane scattering is quite important. 

Next, propagation of normal modes in a shallow-water waveguide is studied. This study 

is broken into several stages. First, a perturbation method is developed and used to estimate 

mean field normal mode attenuation coefficients due to scattering. Comparison with earlier 

published work shows excellent agreement. The statistics of the scattered field are then 

studied, and expressions for the reverberant field in a 2D ocean are derived. Numerical re- 

sults for the scattered field will be shown in the next chapter. In the final section, scattering 

by internal wave-induced sound speed fluctuations in the ocean is briefly discussed. 

The scattering theory described here is analogous to the KS rough-surface scattering 

theory, and the results obtained are written in a form similar to the rough scattering results 

of the last chapter. This similarity aids comparison of the different scattering mechanisms. 

3.1    Self-consistent volume scattering theory 

The wave equation for inhomogeneous medium has been derived by several authors, in- 

cluding Chernov [11]. Assuming harmonic time dependence, we write the inhomogeneous 

Helmholtz equation: 

[V2 + k2(r,z)]p(f,z) - YßtA . vp(f» = SJ{z - zs)5{f) (3.1) 
p(r, z) 

where the source is a point source of strength Sw, and f = (x, y). We assume that there are 

small variations in both density and sound speed. If the background density is constant, 

we can write 

p(r, z)    =   p0 + 6p{r, z) 

c(r,z)    =   co{z) + 6c(r,z) (3.2) 

Expanding the Helmholtz equation to include first order-small terms in p and c gives 

[v2+^ w _ «f,yw „ _ vftM).       = SJ(z _ 
Co{Z) p0 

Next we expand the pressure field in terms of a coherent, mean field and an incoherent 

diffusely scattered field: 

p(f, z) =< p(r, z) > +s{r, z) (3.4) 
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Inserting this expansion in the equation above and averaging (remembering that sound 

speed and density fluctuations are zero mean) gives an equation for the coherent field: 

[V2 + ^)]<p(r»>    -    <2ScF>*WzK(f,z)> (3.5) 
co{z) K     ' 

-    -J- < V(8p(r, z)) ■ Vs(f, z) >= Sa8{z - zs)8{r) 

Subtracting this equation from the full unaveraged Helmholtz equation, we can get an 

expression for the scattered field: 

[V2 + Ag(z)]5(f, z) = 2fc<r>)*g(*) < p(f?> z) > +±V(5p(r, *)) • V < p(f, z) >      (3.6) 
co[z) p0 

This equation is equivalent to Eq. 2 in Hines [31]. 

The two forcing terms on the RHS result from propagation of the mean field through 

the medium fluctuations. The first term accounts for scattering generated by sound speed 

fluctuations, and is monopole-like. The second term, which represents scattering from 

density fluctuations, depends on the derivatives of the acoustic field and the inhomogeneities. 

We therefore expect it to have a more complicated scattering pattern. 

The problem can be simplified by assuming that variations in the sound speed and 

density are linked, since the sound speed is a function of density. Sound speed and density 

are then written in terms of some background variable. In the water column temperature 

is generally taken to be the background variable, as in Chernov. Hines, studying scattering 

from a random sediment bottom, expressed fluctuations in the sound speed and density as 

functions of the bottom porosity P [31]: 

Sc   =   ^SP(r,z) 

Sp   =    ^6P(r,z) (3.7) 

where SP is the variation in the bottom porosity.   Hines gives empirical values of the 

derivatives to be §£ = -1.440^ and J£ = -570f. Here we follow Hines and consider 

the the material properties to be functions of porosity, remembering that very similar results 

are obtained if temperature is the fluctuating background variable. 

We can rewrite the equations above, using the notation 

co(z) 
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1 dp 
ßp = 7oW (3-8) 

to simplify the expressions. The mean field equation is rewritten as 

[V2    +   fcjj(z)] < p(f, z) > _^c(z) < sp(f, z)s{r, z) > 

-   Vp<V(öP(r,z))-Vs(r,z)>=SUJ6(z-zs)6(r) (3.9) 

and the scattered field equation becomes 

[V2 + k2(z)]s(f, z) = iic{z)8P{r, z) < p(f, z) > +ßpV(6P(r, z)) • V < p(f, z) >     (3.10) 

Our solution proceeds as follows: the equations above are Fourier transformed to yield 

expressions in the form of the depth-separated wave equation. We then find a solution for 

the transformed scattered field S in terms of the coherent field. This solution is substituted 

into the transformed version of Eq. 3.9 to give a self-consistent equation for the coherent 

field. This equation will let us calculate the loss of coherent field energy due to scattering. 

We begin by applying the 2-D wavenumber transform, Eq. 2.10. This yields (see App. 

B.3 for details): 

d2 

g^    +    kl(z)-q2}s{q,z) = 

+    2üj^' {l»c(z)-»P(q-k']-k')SP(q-k',z)<p(k',z) > 

+     „  dSP(q-k',z)d<p(k',z)>) 
+    »> dz Bz / (3-11) 

The horizontal derivatives in the density term have become algebraic factors of k and q. 

The RHS in the equation for the scattered field is seen to be a source term distributed over 

depth, and we can write the scattered field as [12, p. 42] 

HZ Z) = -Jj    dz0    dk'Gw(q, z, z0) [hfa k')SP(q- k\z) < p(k',z0) > + 

„  d6P(q-k',z0)d<p(k',z0)> 

"' dz~o dz~o J (3"12) 

where 

bi(q,k)=ßc(z0)-fxp(q-k)-k (3.13) 
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I- [dz2 

Similarly we can transform the mean field equation, giving (see App. B) 

+ kl{z)    -    k2} < p(k,z) > -— Jd2q[{ßc(z) - np{k-q) ■ q) < 8P(k - q,z)s{q,z) > 

= SJ{z - zs)8(r) (3.14) 
dSPjk - q, z) ds{q, z) 

+    ßp< dz dz~> 

Equations 3.12 and 3.14 are combined to eliminate the scattered field variable s, giving 

an equation only involving the coherent field < p >. This substitution results in several 

second-moment expectations of the porosity fluctuations and their ^-derivatives. We model 

the fluctuation statistics as being described by a correlation function which is separable into 

horizontal and vertical components: 

< 6P(r, z)SP{f+ p, z0) >=< a2 > N(p)M{z - z0) (3.15) 

This is rewritten in the wavenumber domain as 

<ÖP(k,z)ö~P(q,Zo) >= 2TT < a2 > PH(q)S(k + q)M{z - z0) (3.16) 

where PH is the power spectrum of horizontal fluctuations. Vertical derivatives of expecta- 

tions involving SP translate into z-derivatives of M; for example 

< SP&z)™^ >= 2,<a2> PHmUqld-^^l. (3.17) 

These ^ and ^ terms can be eliminated from the depth integrals using integration 

by parts, following the procedure developed by Chernov. The detailed calculations are 

quite messy and are shown in Appendix B.3. The only restrictions placed on M are that 

M(z - z0) ->■ 0 and and —Qz -> 0 as the depth separation z - z0 becomes large. 

These conditions are satisfied by a number of physically reasonable correlation functions, 

for example Gaussian or decaying exponential forms of M(z - zo). 

After the integrations by parts, the final form of the mean field equation is: 

fe    +    *»(*) ~ ^ < P$'Z) > + <°2> J Jd2qdz0M{z - z0)PH(q- k) 

F1(q,k,zo) <p(k,z0) > +F2(qXzo)d<P^,Zo)>) = ^6(z - zs)(3.18) 
OZQ ZTT 
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The quantities in the correction term are 

vt-Z     \ n  t~ \  i       /    d2GLJ(q,z,z0) dGu(q,z,z0) 
Fi{q,k,z0) = aia2GUJ{q,z,zo) + np(az — a4 ) (3.19) 

and 

F2(q,k,zo) = M«3 - a^Ujj,*,*) (3 20) 
OZn 

where 

ax = fic(z0) - HP{k -q)-q 

G2 = Vc{zo) + Vp(ko ~ q- k) 

a3 = HC(ZQ) + Hp{2kQ -k- (k + q)) 

2/J.pk%(z0) + 3/ic(z0) dc0 a4 = —r ^— (6.21) 
c0(z0) OZQ 

The complexity of this expression makes it difficult to interpret physically, but we can 

give some meaning to the terms. The integral term describes the loss of energy from the 

coherent field due to scattering. Prom the calculations shown in Appendix C, we also see 

that the algebraic terms involving q, k, and k%(z) multiplying the p.p terms in a\ - az result 

from horizontal and vertical derivatives. All terms including ^-derivatives of the pressure 

field or Green's function also involve only the density fluctuations. These terms all result 

from the spatial derivative term, f/pfy , in the inhomogeneous Helmholtz equation. The 

term 04 takes account of any sound speed gradient. 

This integro-differential equation is in general difficult to solve. However, if the vertical 

correlation length of the scatterers is small compared to a wavelength, a solution can be 

found. An example of this approach is shown later. 

3.2    Plane-wave scattering from sediment bottoms:   Power 

spectral density 

Next we study plane wave scattering from a sediment bottom. A great deal of physical 

insight can be obtained by looking at the power spectral density, or power scattered into 

each wavenumber q. This is found as a special case of the cross-spectral density, the second- 

moment expectation of the transformed scattered field. 

The expectation involves cross-terms involving expectations of M and its z-derivatives, 
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which can be simplified using integration by parts. The detailed calculations are discussed 

in Appendix B.4, with the final result 

< s(qi,zi)    s*{q2,z2)    >= 2ir < a2 >  I f f j dzodz'dkrffoSiq! - km) 

M(z0 - z')5{qx -kx-q2 + k2) 

[A(1)(gi)^(^^o)+A(2)(gii.)GU_>i^i^o) 

[A(1)(g2) dGM2,Z2, Z') + A(2)(fe)| &)Gft>(&> Z^A (3.22) 

where 

A^)(jfc,z)    =    -»?<*&*> 
dz 

AW(qXz)    =    W{z)+Hp(kl{z)-q.k)f<P{^z)> 

dz 
(3.23) 

To find the power spectral density, we consider a single wavenumber and single depth, or 

qi-q2 = q and zx = z2 = z. The delta function then collapses to k± = k2. 

Experimental studies have shown that the vertical correlation lengths of fluctuations in 

sediment bottoms are usually quite short. Since we are considering low-frequency scattering 

from sediment bottoms, the vertical correlation length will be smaller than an acoustic 

wavelength. It is then reasonable to approximate the vertical correlation function as a delta 

function [75]: 

M(z - z0) -> 8{z - z0) (3.24) 

In the expression for the power spectral density removes one depth integral, giving z = z0. 

The expected power spectral density is then given by 

< s(£ z)s*(q, z)>    =    2TT < a2 >  f dz0 f dkPH(q - k) 

|AWflg-«'-")+AWG.(g,,at)|' (3.25) 

We consider the case of a single plane wave incident on the sediment from the water 

column, scattering into plane waves in the sediment. The incident field in the bottom is of 

the form 

<p(k,z0)>=T12(k)e-ik*2Z0. (3.26) 
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where T12(k) is the transmission coefficient from the water into the sediment. We choose 

the Green's function to be the free-space Green's function. This means we can only evaluate 

the scattered field for receivers in the bottom medium. We will evaluate it at z = 0, the 

water-sediment interface. The depth-dependent Green's function is given by 

e-iqz2\z-z0\ 
Gu{q,z,zo) = 

4niqz2 
(3.27) 

This expression has a square root singularity in the Green's function. This singularity is 

not physically meaningful and can be removed by changing the variables of integration [38], 

so it is not shown in the following plots. 

The scattered field is strongly affected by the power spectrum chosen to represent the 

inhomogeneities. For these calculations both two-dimensional Gaussian and Goff-Jordan 

spectra are used. These spectra are simple generalizations of the ID spectra defined in the 

last chapter: 

D ,-* LxLy (Lxqx)
2+(Lvqv)2 

■TGaussiq)     = e 4 

PGoff-Jordan(q)    =   LxLy \{{Lxqx)
2 + {Lyqy)

2) + l] ~2 (3.28) 

where Lx and Ly are the correlation lengths in x and y respectively.   The Goff-Jordan 

spectrum is more peaked near its maximum and contains much more energy at higher 

wavenumbers. This spectrum has been used in modeling rough surface scattering [47], and 

is chosen to reflect the idea that we expect variations in nature at many length scales. Also, 

it describes a power-law roll off at high wavenumbers like that measured by Yamamoto [85]. 

Figures   3-1 and   3-2 compare the effect of the choice of power spectrum. Results for 

correlation lengths of 10 m.   and 1 m.   are shown.  A 10 m.   correlation length was used 

by Tang in his modeling [75], and shorter horizontal correlation lengths were assumed by 

Hines[31]. For these plots scattering from sound speed fluctuations alone is included. The 

spectrum is plotted vs. horizontal wavenumbers in the x and y directions. A lOOiJ* plane 

wave is assumed to be incident on the bottom along the x-axis (qy = 0), at a 10 degree 

vertical angle.   The bottom properties are p = lüg/cm*, cb = 1650m/s, and g = 0.1. 

For this combination of incident angle and bottom type the incident wave is evanescent in 

the bottom.  Shown on the plot are the sediment wavenumber kb (inner circle) and water 

wavenumber kw (outer circle).   Thus wavenumbers inside the \ k \= kb circle correspond 

to the continuous spectrum, wavenumbers between the circles correspond to the discrete 
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Figure 3-1: Plane-wave scattering from sound speed fluctuations, f = 100 Hz; Gaussian 
power spectrum, 10 degree incident wave. 

spectrum, and wavenumbers outside the | k \= kw circle correspond to waves which are 

evanescent in both the water and sediment. Comparing the plots for 10 m. correlation 

lengths, the most striking difference is that the backscatter is greatly enhanced with the 

Goff-Jordan spectrum (Figure 3-2) due to the longer tails of the power spectrum. Strong 

out-of-plane scattering is seen with both spectra, though a peak is observed at angles 

close to in-plane. In both cases the scattering is basically forward-directed, with the peak 

in scattered energy centered around the specular direction. Decreasing the correlation 

length to 1 m. gives a much broader distribution of scattered energy. This is expected, 

since in the limit of small correlation length the inhomogeneities can be thought of as a 

random distribution of independent point scatterers. Each of these point scatterers radiates 

isotropically, so the overall scattering pattern is more diffuse. Decreasing the correlation 

length is also seen to reduce the peak scattered power considerably. This can be understood 

by remembering that sound will scatter most strongly from objects roughly the size of the 

wavelength or larger. Since the acoustic wavelength in this case is 16.5 m., most of the 

sound speed fluctuations for the 1 m. correlation length will have horizontal scales much 

less than a wavelength. 

Figure 3-3 shows scattering from both sound speed and density fluctuations in the 

sediment bottom. For the 10 m. correlation length, the scattering intensity levels are only 

slightly higher than in the case without density fluctuations. Thus we conclude that, for long 

horizontal correlation lengths, scattering from sound speed fluctuations is dominant. When 

the correlation length is decreased to 1 m., the density scattering is dominant. The scattered 

field levels are increased over the 1 m.   correlation length case with 6c fluctuations only. 
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Figure 3-2: Plane-wave scattering from sound speed fluctuations, f = 100 Hz; Goff-Jordan 
power spectrum, 10 degree incident wave. 

Most importantly, the maximum is now in the backscattered direction. This backscattering 

was predicted by Chernov [11] for 1-D scattering, and can be seen in the q — k term in Eq. 

3.12, which shows the density scattering contribution has a null in the forward direction. 

Since experimental data shows the short correlation length is perhaps more typical for most 

bottoms, this effect is quite important, especially when modeling monostatic experiments 

in shallow water. 

The results so far have used Hines' empirically determined values of §p and §*p. These 

values were determined from a limited dataset, and we can expect variations depending on 

the particular sediment bottom. Hines' values predict that the normalized density fluctua- 

tions & are about twice the normalized sound speed fluctuations |^. In Fig. 3-4results are 

shown in which ^ is adjusted so the normalized density fluctuations are equal to (K = 1) 

and half of (K = 0.5) the normalized sound speed fluctuations. The density scattering is 

still seen to have a very strong effect, though now the scattering is almost entirely into 

the continuous spectrum. Interestingly these plots would be reasonably well described by 

Lambert's law, which predicts the maximum scattered field in the vertical direction. 

We can also use this approach to study scattering from a bottom with an anisotropic 

power spectrum. Fig. 3-5 shows scattering of plane waves on a bottom with a correlation 

length of 2 m. in a; and 10 m. in y. Increasing the correlation length in y gives a power 

spectrum with much less width in qy. In Fig. 3-5 we let a plane wave be incident on 

the bottom at a vertical angle of 10 degrees, and horizontal angles of 0 (along the x axis), 

45 degrees, and 90 degrees (along the y axis). From observing the plots we see that the 

anisotropy causes the scattered field to be skewed away from the incident angle for incident 
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Figure 3-3: Plane-wave scattering from sound speed and density fluctuations, f = 100 Hz; 
Goff-Jordan power spectrum, 10 degree incident wave. 
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Figure 3-4: Plane-wave scattering from sound speed and density fluctuations. Same as 
above, but ratio K of normalized sound speed and density fluctuations is varied; equal for 
K = 1, normalized density fluctuations halved for K = 0.5 
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angles not lined up with the axes of the bottom. Comparing the 0 and 90 degree cases, 

we see the shorter correlation length in x causes increased scattering into the continuous 

spectrum for the 0 degree incident wave, vs. increased out-of-plane scattering for a wave 

incident along along the y axis. 

3.3    Modal scattering from random sediment bottoms 

In shallow water at low frequencies the acoustic field is often well described as a sum of a 

reasonably small number of normal modes. This leads us to specialize the theory developed 

above to consider scattering of a modal sound field from inhomogeneities in fluid sediment 

bottoms. In doing so we will make a number of simplifying assumptions. The most useful 

of these, discussed above, is that the vertical correlation function can be approximated as a 

delta function. The second major simplification made is that the sound speed is constant in 

the layer where volume fluctuations are present. This assumption is limiting, but will still 

allow us to examine the basic scattering physics. The main advantage of studying isovelocity 

layers is that the incident field can be written in terms of up- and down-going plane waves. 

This allows the depth integrals in the scattered field expressions to found analytically. The 

integrals over the incident field modes and their derivatives must otherwise be performed 

numerically, making the calculations much slower and less accurate. 

KRAKEN or any other normal mode code can used to find the mode shapes and eigen- 

values for the waveguide. The continuous spectrum contribution is included by introducing 

a false bottom, a pressure-release boundary sufficiently deep in the sediment that attenua- 

tion will kill off unphysical reflections from the fictitious interface. The modal problem is 

then converted to a proper Sturm-Liouville problem and all modes are proper modes. Since 

there are both up- and down-going plane waves in the scattering layer, we write the mode 

shape as 

ij>n(z) = 
Cn{z), z < Z\ 

. Ane-^'-iz-zx) + Bneikzn{z-Zl)^     z>Zi (3-29) 

where £„(*) are the mode shapes found by the normal mode program, and zx is the top of 

the volume scattering layer. These plane waves propagate in the bottom at angles found 

from 

kzn = yjtf - Re(kny (3.30) 
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Figure 3-5: Plane-wave scattering from anisotropic sound speed and density fluctuations, 
for incident angles of 0, 45, and 90 degrees, f = 100 Hz; Goff-Jordan power spectrum; CLx 
= 2 m, CLy = 10 m. 
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where kb is the bottom wavenumber. From the boundary conditions of continuity of pressure 

and normal velocity we find 

One problem which arises is that of dealing with the effects of attenuation in the bot- 

tom. The modal attenuations calculated by a normal mode program such as KRAKEN 

represent an integrated attenuation over the full mode shape, and cannot be easily related 

to plane wave attenuations. Instead, the sediment attenuation is included by introducing 

an imaginary part of the bottom wavenumber: 

kb = kb(l - i8) (3.33) 

If the sediment attenuation is given in units of dB/X, the imaginary part 6 is given by [38, 

Chap 2] 

a 
(3.34) 54.58 

This suggests the following approach: first, the eigenvalues and mode shapes at the water- 

sediment interface are found numerically. Next, the real parts of the eigenvalues and mode 

shapes are used to estimate the amplitudes of the plane waves in the scattering layer. 

Finally, the vertical wavenuber ab is found using the complex bottom wavenumber, which 

accounts for attenuation in the bottom. 

3.3.1    Mode attenuation coefficients 

In this section the mean field equation is solved to find mean-field modal attenuations. First 

we must rearrange the mean field equation slightly. If we restrict ourselves to calculating 

attenuations for the propagating modes of the waveguide only, we can take advantage of 

the fact that these modes are exponentially decaying in the bottom to write 

 -Q-Z = -ah <p(k,z) > (3.35) 
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where at, = yk2 - k2. This lets us write the homogeneous mean field equation ( 3.18) in 

the form 

ldz2 [TT2 + kl - k2} < p(k, z)> + <a2> f(k, z) < p(k, z) >= 0 (3.36) 

where f[k,z) comes from combining the £\ and F2 terms. It is clear that the last term is 

a 0(a2) perturbation to the mean field. Since the scattering theory retains terms only up 

to order 0(a2), it is consistent to use the unperturbed eigenvalues and eigenfunctions when 

calculating f{kn,z); i.e. f(kn,z) ta /(£„„,*). This argument was made by Kuperman [43] 

in his original paper on rough surface scattering. 

We next substitute the modal forms of the Green's function (as a sum over modes m) into 

the mean-field equation, and switch to polar coordinates: / d2q = / / qdqdO. Integrating 

over q exposes poles at q = qm, leaving the integration over 9. Physically, this means that 

the scattered field will travel in the modes of the waveguide, but can be scattered into any 

horizontal angle. The correction term above becomes 

.        M 

"\   ' m=l 

ßp{aA - ab(z)(ai - a2 + ßp[q2
m - kl(z)]))ipm(z)^'m(z)] (3.37) 

Here we have left implicit the dependence of the <n terms: 

ai = ai{qm,k,z) (3.38) 

where q= (qmcos9, qmsin9). 

This equation can be rewritten in the form of an eigenvalue perturbation problem, giving 

d2 

te + fco(^)]^n = kl%l>n- <o2> f(kn,z)ipn . (3.39) 

The new eigenvalue can then be found using perturbation theory, as described by Bender 

and Orzag [5]. Appendix B shows the first-order correction for the eigenvalue is: 

Ak„ = ^^ fD i^^Mdz (340) ^n 

The imaginary part of &kn is the mode attenuation coefficient. 

To validate our approach, we compare our method to results obtained by D. Tang [75], 
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who studied scattering from a bottom containing sound speed fluctuations only. Tang's code 

REF was used to calculate mean field plane-wave reflection coefficients for the sediment 

bottom. These reflection coefficients were used as a boundary condition for the normal 

mode code KRAKEN, which calculated the modified eigenvalues. The resulting change in 

the mode attenuation was taken to be Tang's prediction for scattering loss. 

KRAKEN was then used to find the eigenvalues and mode shapes for the unperturbed 

scenario. These were used in Eq.   3.40 to calculate the mode attenuations using our method. 

A simple scenario, shown in Fig. 3-6, was used for comparison. A 50 m. deep isove- 

locity water layer overlays a sediment halfspace, the upper 50 m. of which contains sound 

speed inhomogeneities. The inhomogeneities are assumed to have a 2D isotropic Gaussian 

correlation function in the horizontal and to be delta-correlated in the vertical. Attenuation 

in the water and sediment is neglected, so any attenuation is purely due to scattering. 

Figure 3-7 shows the plane wave reflection coefficient for correlation function parameters 

which are used by Tang in his thesis: 6crms/co = 0.1, horizontal correlation length Z0 = 10 

m., and vertical correlation length ZQL = 1 m. 

When comparing the modal results with Tang's attenuation coefficients, a factor of two 

difference was found. In Figure 3-8, the results found by the modal approach were divided 

by two, giving the excellent agreement shown. Unfortunately the source of this difference 

has not been located yet, but likely is a result of an algebraic error in one of the two 

methods. 

Figure 3-8 shows the modal attenuation coefficients for / = 200Hz, with the factor 

of two difference removed. When only scattering into the proper modes is allowed, the di- 

rect calculation significantly underestimates the actual modal attenuation. The continuous 

spectrum is then included numerically by introducing a false bottom at 400 m. depth (note 

we can allow a false bottom without any bottom attenuation only because we are interested 

here in scattering into the continuous spectrum; when calculating statistics of the scattered 

field we must always include bottom attenuation so the continuous spectrum modes will 

decay quickly with range). When these extra modes are included the estimates from the 

two methods agree quite well. 

Next the fluid bottom, shallow water waveguide shown in Fig. 3-9 is considered. Both 

sound speed and density fluctuations are included. For notational convenience, we define a 

parameter a, which is set equal to the normalized sound speed fluctuation öc/c0. For a given 

a the density fluctuations are found from the relationship between density and sound speed 

fluctuations given by Hines' constants. We again examine horizontal correlation lengths of 1 
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fc f = 200 Hz.   Water: c = 1500 m/s, p : 

50 m. 

100 m. 

Random Scdi inciit I-iijvr: 6t/VO = 0.1, L - JO in 

c=17«)ii]/s., p= 1.8 

c= 1700 m/s, p = 1.8 

Figure 3-6: Scenario for comparison with Tang's results, f = 200 Hz; Gaussian spectrum, 
10 m. correlation length,  Sc/co = 0.1. 

0       10     20     30     40     50     60     70     80     90 
Grazing angle, deg. 

Figure 3-7: Reflection coefficients for scenario. Dashed line is for nonrandom bottom; solid 
line is for bottom with random layer. 

Figure 3-8: Comparison with Tang's results. Open boxes are from Tang; diamonds are 
modal solution including continuous spectrum modes; filled boxes are modal solution, proper 
modes only. 
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c = I5(X)m/s 

(c= 1480m/s 

n 50 m. 

100 m. \c = 1490 m/s 

Cp = 1650 m/s,p = 1.9 g/cmA3 
otp = 0.2dB/A 

Figure 3-9: Shallow water scattering scenario. 

3 Mode# 4 

Figure 3-10: Mode attenuations for shallow water example, f = 100 Hz; Goff-Jordan spec- 
trum, 10 m. correlation length, a = 0.1. Solid line includes effect of both sound speed and 
density fluctuations, dotted line includes sound speed fluctuations only. 

and 10 m. The random scattering layer is assumed to be between 100 and 150 m. depth. For 

the 10 m. correlation length, seen in Fig. 3-10, we see including density scattering causes 

only a slight increase in mode attenuation, while density fluctuations are the predominant 

cause of loss for the shorter 1 m. correlation length case (Fig. 3-11). This is in agreement 

with the earlier discussion. Finally, the full scattering loss with the 1 m. correlation length 

is shown in Figure 3-12 to be of roughly the same order of magnitude as the loss caused by 

a bottom attenuation of O.ldB/X. Whether or not attenuation due to volume scattering is 

a significant attenuation mechanism will depend on the environment considered. However, 

we will see in the next chapter that the coherent field loss always affects the correlation 

statistics of the total field. 
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3 Mode # 4 

Figure 3-11: Mode attenuations for shallow water example, f = 100 Hz; Goff-Jordan spec- 
trum, 1 m. correlation length, a = 0.1. Solid line includes effect of both sound speed and 
density fluctuations, dotted line includes sound speed fluctuations only. 

0.5T 

3 Mode# 4 

Figure 3-12: Mode attenuations for shallow water example, f = 100Hz; Goff-Jordan spec- 
trum, 1 m. correlation length, a = 0.1. Dotted line includes effect of both sound speed and 
density fluctuations, solid line shows attenuation due to volume absorption of 0.1 dB/A. 
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3.3.2    Reverberant field statistics: 2D ocean 

Perhaps the most useful application of this volume scattering theory is in calculating statis- 

tics of the reverberant and total field in ocean waveguides. Here we examine scattering in 

two-dimensional (x, z) or (r, z) waveguides. The results above have clearly demonstrated 

the importance of out-of-plane and three dimensional effects, so the scattered field statis- 

tics generated here cannot be expected to be fully realistic. However, the 2D simplification 

allows us to examine the interaction of scattering and waveguide physics with a greatly 

reduced computational load. 

As was seen when studying rough surface scattering, the range-wavenumber transforms 

are defined so that similar expressions are obtained in the wavenumber domain whether the 

scenario is two- or three-dimensional in space. We can therefore write the 2D analog of Eq. 

3.12, the transformed scattered field. 

s(q,z) = -j    dz0 I    dk    Gu{q,z,z0)[b1{q,k)ÖP{q-k,z) <p(k,z0) > + 

dö~P(q - k, z0) d< p(k, z0) > 
P dz0 dz0 

where 

(3.41) 

h (q, k) = nc(z0) - ßp{q - k)k (3.42) 

and the scatterers are assumed to be in the layer bounded by [zl,z2]. As for rough surface 

scattering, the mean field and Green's function can be expressed in terms of modes. Since we 

are interested in finding the scattered field in the spatial domain, the porosity fluctuations 

are written in the spatial domain, using the Fourier transform. The scattered field is then 

found from the inverse transform: 

S(X'Z)    =    "^r"/2dz°Jdx' JdqJdkGu(q,z,zo)[bi(q,k)SP(x',z)<p(k,zQ) 

UP 

i   rZ2 

> + 
d5P{x\ ZQ) d< p(k, z0) >] e_ikx,e_iq{x_xl) 

dz0 dzQ 

The approach to calculating the second moments of the scattered field is the same as in the 

rough surface case, with the one difference being that vertical derivatives of the porosity 

are handled using integration by parts. The details of the calculation are shown in App. 

A.6. Numerical results for the scattered field are seen in the next Chapter. 
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3.4    Scattering from internal waves 

The scattering theory developed in section 3.1 has so far only been used to estimate the 

effects of random variations in the sediment bottom. Inhomogeneities in the water column 

caused by oceanographic disturbances are also important scatterers, as is well known. In 

this section we address scattering from internal wave- induced variability in shallow water. 

The theoretical development so far has included scattering from both sound speed and 

density inhomogeneities. As mentioned above, density fluctuations can be neglected when 

modeling fluctuations in the water column due to internal waves and other oceanographic 

disturbances. There are several reasons why this is so. First, experimental data reported 

by Beranek (cited by Chernov) for typical conditions in seawater show that 

(Z)\P0    ~   2xl(T3 1_   dc 

1ÄL    ~   2.6 xl(T4 (3.44) 

i.e. velocity fluctuations are an order of magnitude larger than density fluctuations. Sec- 

ondly, internal waves cover a very large range of length scales, with much of the energy 

concentrated at lower (near-tidal) frequencies with horizontal wavelengths measured in 

kilometers. As we saw above, when correlation lengths are long the scattering tends to 

be dominated by sound speed fluctuations. 

The equations for the mean and scattered fields become much simpler when density 

fluctuations are neglected. Setting np = 0, the mean field equation is: 

[-^L+kKz)    -    k2)<p(k,z)> + <a2> I jd2qdz0M(z-z0)S(q-k) 

ß2
c(z0)GUq,z,z0)<p(k,Z()) >= ^S(z-Zs). (3.45) 

The scattered field equation becomes 

s(q,z) = - I Idzodk'Gufäz,z0)ßc{zo)öT(q- k',z0) <p{k',z0) > (3.46) 

where the ocean temperature fluctuations are given by ST. 

The types of internal wave motions possible are controlled by the density gradient pro- 

file in the ocean. The hydrodynamic equations of motion, together with the boundary 

conditions at the surface and seabed, form a boundary value problem which can be solved 

to find internal wave modes. In shallow water, current meter data has been explained by 

84 



decomposition into a fairly small number of internal wave modes [18]. In the open ocean 

there are a large number of internal wave modes, which can be regarded as forming a con- 

tinuum. The energy distribution versus frequency and wavenumber is surprisingly constant 

in the deep ocean and has been empirically described by the well-known Garrett-Munk 

internal wave spectrum [20]. In general, internal wave motions are correlated over large 

depths, which poses a problem for the acoustic theory presented in section 3.2. While the 

derivation makes no assumption about the vertical correlation structure of the sound speed 

fluctuations, it is not possible to find a perturbation solution of the mean field equation 

unless the fluctuations are delta-correlated. 

There is one scenario of practical interest for which we can assume the fluctuations to 

be delta-correlated in depth. In shallow water there is often a strong density contrast, the 

thermocline, between the well-mixed warm surface water and colder deeper water. To first 

order this is modeled as a two-density ocean, and the hydrodynamic equations of motion 

can be solved to find the dispersion relations for internal waves traveling on the density 

interface. Wave motions on the thermocline have been studied in Massachusetts Bay [29] 

as well as in the South China Sea, where soliton waves were observed. Since these interface 

waves have no vertical structure it should be possible to model scattering from them using 

the theory presented above. 

3.5    Summary 

In this chapter a new self-consistent theory describing scattering from volume fluctuations 

in the ocean has been developed. This theory advances the state of the art because it 

includes scattering from both sound speed and density fluctuations, and allows calculation 

of coherent field attenuation due to scattering. Previous modeling including both sound 

speed and density fluctuations has been based on the Born approximation, and does not 

give coherent field scattering loss. The effects of including density fluctuations in a 3D 

ocean were examined in some detail. Density scattering was seen to increase backscattered 

energy. When the horizontal correlation length of scatterers is small, density scattering 

significantly changes the overall scattering pattern. The effects of out-of-plane scattering 

and anisotropic fluctuation statistics were illustrated as well. The theory was extended 

to find modal attenuations due to scattering, showing agreement with previous work for 

scenarios involving sound speed fluctuations only. For scenarios involving both sound speed 

and density fluctuations, modal scattering losses were shown to be comparable in magnitude 
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to the effects of bottom attenuation.  The theory can also be used to model reverberation 

in a 2D ocean, for comparison with the surface scattering results in the last chapter. 
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Chapter 4 

Numerical results for ocean 

reverberation 

In this chapter the theoretical tools developed above are used to study reverberation in 2D 

ocean environments. The reformulated KS rough scattering theory discussed in Chapter 2 

and the volume scattering theory shown in Chapter 3 are implemented in a reverberation 

code (NMSCAT). This program can be used as a numerical laboratory to identify the 

important parameters of the scattering problem. 

In the first section the rough surface scattering results are validated by comparing them 

with Schmidt & Kuperman's [68] wavenumber integration implementation (OASS). The 

two approaches are shown to agree quite well for both fluid and elastic bottoms, with the 

differences in predicted intensity generally being less than IdB. The reduction in compu- 

tation time required for the modal approach is also quantified. The computation time for 

OASS is shown to grow quadratically with range, while the NMSCAT computation time is 

independent of range. As a result, the modal approach may be several orders of magnitude 

faster for long-range reverberation problems. 

The model is then used to study surface and volume scattering for a number of different 

cases. The effects of the scatterer statistics, the scattering mechanism, and the waveguide 

are examined in detail. The statistical description of the roughness and/or fluctuations 

is seen to have a strong effect on the scattering process. Surface and volume scattering 

are compared, and the role of density fluctuations in increasing backscatter is shown. The 

effects of locating the scattering in a waveguide are quite fundamental and are demonstrated 

by a number of examples. An elastic bottom example demonstrating strong scattering into 

the Schölte interface wave is used to highlight the importance of taking bottom elasticity 
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into account. 

The statistics of the total field are calculated for several different examples, and are seen 

to depend strongly on bottom type. For low contrast bottoms the scattered field is mostly 

lost into the bottom, so the total field coherence can actually increase with range. The 

cross-modal coherences are plotted, and used to see the loss of coherence in the field with 

range. At longer ranges the cross-modal coherence matrix is nearly diagonal, meaning the 

modes are incoherent. 

Finally, some time-domain results for scattering from a narrow-band pulse are shown. 

This is accomplished by using the modal group velocities to find which sections of the bot- 

tom are generating the scattering received at any given time, a concept which has been 

developed by several authors [88, 17]. The time-domain results make the role of the con- 

tinuous spectrum modes and elastic interface waves clear. 

4.1    Rough surface scattering and model validation 

Here we present results for three different shallow water environments, and compare the 

results to Schmidt and Kuperman's OASS model. In Appendix A numerical results for 

NMSCAT and OASS were shown to agree for the simple case of an ideal waveguide. In 

this section we consider more realistic scenarios. The three rough bottoms considered, in 

order of increasing bottom impedance, are a sand (fluid) bottom, a limestone bottom, and 

a basalt bottom. Variations on these environments will be used later in the chapter to 

demonstrate different reverberation effects. 

4.1.1    Fast fluid bottom 

The fluid bottom example considered is shown in Fig. 4-1. The example is a shallow 

(100 m.) ocean with a bilinear sound speed profile. The bottom is represented as a fluid 

half-space with properties typical for a sand bottom. A 70 Hz source is located at a depth 

of 50 m. in the water column. 

In this example the impedance contrast at the bottom is fairly low. For the frequency 

and water depth shown there are 4 proper modes. The continuous spectrum contribution 

can either be included by using KRAKEN to find leaky modes, or by introducing a false 

bottom deep in the sediment to convert the problem to a Sturm-Liouville form. When 

modeling volume scattering from within the sediment the false-bottom approach is used, 

since the leaky modes diverge in the bottom. For rough surface scattering the leaky mode 



c= 1500 m/s 

c= 1480 m/s 

t 50 m. 

100 m. U= 1490 m/s 

1 m. RMS roughness 
20 m correlation length 

Cp= 1650 m/s, p = 1.9g/cmA3 
ap = 0.8dB/A 

Figure 4-1: Fluid bottom reverberation scenario 

sum is preferable because it is more compact, resulting in faster computation times. Table 

4.1 shows proper and leaky pole locations as found by KRAKEN; 6 continuous spectrum 

modes are found (many more are found using a false bottom). 

Mode real(kn) imag(kn) 

1 0.2950478 -1.2735956E-05 

2 0.2907900 -6.4778695E-05 

3 0.2836920 -1.3358952E-04 

4 0.2734942 -2.6635826E-04 

5 0.2596908 -1.2600222E-03 

6 0.2401055 -2.6681011E-03 

7 0.2140755 -4.1656587E-03 

8 0.1790221 -6.2538525E-03 

9 0.1278224 -1.0457729E-02 

10 0.0309523 -4.9936121E-02 

Table 4.1: Eigenvalues for fast fluid bottom, f = 70 Hz. First 4 modes are proper, last 6 

are leaky modes 

Figures 4-2 and 4-3 show the expected scattered field intensity for a receiver at a 

depth of 50 m. as a function of range. Figure 4-2 compares the two solutions for an (x, z) 

geometry, while Figure 4-3 assumes a cylindrically symmetric (r, z) geometry. The dark 

line is the intensity found by the OASS code, while the dashed line is the NMSCAT result. 

The agreement is seen to be good, with the modal solution capturing the interference 
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Figure 4-2: Expected scattered field intensity, fluid bottom case, (re, z) geometry. Solid line 
is OASS result, dashed line is NMSCAT result. Note the overall agreement. 
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Figure 4-3: Expected scattered field intensity, fluid bottom case, (r, z) geometry. Solid line 
is OASS result, dashed line is NMSCAT result. 

pattern almost exactly. The modal result is somewhat sensitive to the method used to 

calculate the derivative of the mode shape at the surface. The error involved in calculating 

the derivative is believed to be responsible for the discrepancy between the results. The 

cylindrical geometry is taken care of by a simple transformation of variables (see Appendix 

A.7). It has the effect of increasing the range of scattered field levels, magnifying the 

disagreement between the two results. 

For this problem the continuous spectrum has an especially strong contribution, due to 

the penetrable nature of the ocean bottom. Figure 4-4 illustrates the effect of scattering 

into the continuous spectrum. The effect is strongest at shorter ranges, as expected, since 

the leaky modes in the incident field have not attenuated away yet. However, the continuous 
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Figure 4-4: Effect of scattering into leaky modes. Plane geometry, scenario above; solid: all 
modes, dashed: proper modes only 

spectrum contribution is noticeable at longer ranges also, indicating that scattering from 

the proper modes into leaky modes is important. The single-mode excitation results shown 

later in the chapter can be used to study these effects in more detail. 

As stated in the introduction, one of the motivations of this thesis was to develop a 

more numerically efficient reverberation code. The efficiency of the modal approach is 

shown in Figure 4-5. Scattered field intensity is calculated at a single receiver depth on 101 

receivers spaced between the source and the maximum range. The computation time for 

the modal approach is a function of the number of modes, and is independent of range. The 

computation time for OASS, in contrast, is quadratic with maximum range. The reason for 

this is that the number of wavenumber samples required for Fourier synthesis of the field 

in OASS increases linearly with range, and the scattering calculations involve wavenumber 

convolutions. Thus at long range the modal approach is much more efficient. 

4.1.2    Limestone example 

Next we consider a scattering scenario with a rough limestone bottom, shown in Fig. 4-6. 

For this example the water column is assumed to be isovelocity. The shear and compressional 

wave speeds in the bottom are fairly high, presenting a large impedance contrast to the 

bottom. Because the water sound speed and shear sound speeds are so close, we can expect 

strong coupling between compressional waves in the water and bottom shear waves. 

Figure 4-7 shows the mode shapes found by KRAKEN for this waveguide. Mode 1 

corresponds to the Schölte wave, an interface wave on the fluid-elastic interface which is 

evanescent in the water.   For this example the Schölte wave decays fairly slowly in the 
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Figure 4-5: Computation times on Alpha 700 for OASS and NMSCAT compared. Rough 
surface: 1 m. rms, 10 m. CL. 1 receiver depth (50 m.), 101 receiver ranges from [0, Rmax], 
Modal approach is much more efficient for large Rmax 

K 40 m. 
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isovelocity, c = 1500 m/s 

I m. RMS roughness, 20 m. correlation length 

Cp = 3000 m/s, Cs = 1700 m/s, p = 2.4 g/cmA3 
ap = 0.1dB/A    as = 0.2dB/A 

Figure 4-6: Scattering scenario with rough limestone bottom; source frequency 50 Hz. 

water. The other modes are seen to be lightly damped. Modes 5-7 radiate into the bottom 

in shear, so can be considered continuous spectrum modes. None of the modes radiates into 

the bottom in compression. 

At this point we begin applying the scattering theory developed above. First we plot 

the power spectral density of energy scattered from a plane wave incident on the bottom 

at a grazing angle of 9.3 degrees (phase speed 1520m/s). The predicted PSD is shown in 

Figure 4-8 along with the result from Schmidt's OASS code. The OASS result is tapered 

to remove the evanescent spectrum, and it also calculates scattering into the continuous 

spectrum (| q |< 0.1) which is neglected in the modal calculation. The forward-scattered 

field is seen to be about 15 dB higher than backscatter. The disagreement in the predicted 
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Figure 4-7: Mode shapes for limestone scenario. Mode 1 is Schölte wave mode, evanescent 
in both water and bottom. 

SCFLD  NINTLG 
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Figure 4-8: Power spectral density for plane wave incident at 9.3 degrees. Solid line is OASS 
result, dashed line is NMSCAT; agreement indicates the elastic solution is correct. 

amplitude for mode 2 shown in the plot indicate that OASES and KRAKEN found slightly 

different mode locations; this type of plot, while very informative, is quite sensitive to the 

sampling of the modal peaks. 

The more conclusive test of agreement comes in comparing the OASS and NMSCAT 

intensity predictions vs. range, as for the fluid bottom case. This comparison is shown in 

Figure 4-9. Two different results for the modal approach are shown; one in which 7 modes 

are used, and another in which an additional leaky mode is included. These results are seen 

to bracket the OASS result at short ranges. The mode 8 eigenvalue has a large complex part, 

so it is possible this mode was not found accurately by the complex root finder used. This 

example demonstrates that accuracy at short ranges depends on the ability to model the 
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Figure 4-9: Expected scattered field intensity, limestone bottom. Solid line is OASS result, 
dashed line is NMSCAT result with 7 modes, dotted line is NMSCAT result with 8 modes. 

continuous spectrum well, which can be difficult using modes. However, at ranges beyond 

half a kilometer the agreement between NMSCAT and OASS is quite good. 

4.1.3    Basalt bottom example 

The last environment we consider is a shallow ocean with a rough basalt bottom, shown in 

Fig. 4-10. A downward-refracting sound speed profile is assumed, and a 50 Hz source is 

located at 50 m. depth. This bottom presents an extremely high impedance contrast to the 

incident sound field. Only mode 7 radiates into shear waves in the bottom; all other modes 

are totally trapped in the water column. Figure 4-11 shows NMSCAT results for bottom 

roughness of 1 m. RMS and correlation length 50 m. Since little energy is lost into the 

bottom the scattered field energy is seen to grow noticeably with range, satisfying energy 

conservation. The consequences of this for total field coherence will be examined below. 

4.2    Effect of scatterer statistics 

The reverberation problem is very complicated as there are strong interactions between 

the random variations of ocean properties, the propagation environment, and the scattering 

mechanism. For this reason it is difficult to come up with a set of "rules" which will describe 

reverberation in all different environments. It is possible to highlight effects which may be 

important in particular cases, to begin to build up an intuition about reverberation. The 

following sections present a number of such examples. 

We begin by examining the influence of the roughness and/or fluctuation statistics on 
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ocp = 0.1dB/A   as = 0.2dB/A 

Figure 4-10: Basalt bottom reverberation scenario; source frequency 50 Hz 

Figure 4-11: Expected scattered field intensity, basalt bottom. Solid line is NMSCAT result. 
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the scattered field excitation. The effect of the power spectrum on the scattering process 

was discussed in Chapter 2. Briefly, we expect that the directivity of the scattering will 

depend on the correlation length of the random scatterers. If the correlation length is larger 

than an acoustic wavelength, sound is scattered in a more directional way. Each section of 

the random seafloor can be considered to be a virtual source for the scattered field. The 

longer correlation length means that these virtual sources form a "virtual array" which has 

some radiation pattern. The phase of each "virtual element" in the array is a combination 

of the incident field phase and a random component. Since the random phase components 

are zero-mean we expect most of the energy to be forward-scattered. 

If the correlation length is less than a wavelength, the picture is very different. The 

scatterer dimensions are small compared to an acoustic wavelength, so they will radiate as 

isotropic point sources. Backscattering will become as strong as forward scattering. 

These trends are seen in Fig. 4-12 - Fig. 4-15 for scattering in the fluid bottom example 

described in section 4.1. The first two plots show the power spectral density of the scattered 

field generated by a plane wave incident on the bottom at the same angle as mode 1. In 

Figure 4-12 sound is scattered from bottom roughness with an RMS roughness height of 1 

m, while in Fig. 4-13 scattering is from a layer of volume scatterers in the first 20 m. of the 

seabed. In the volume scattering layer a = 0.05 (from Chapter 3, we remember this means 

the normalized sound speed fluctuations ^ are set to 0.05, and the normalized density 

fluctuations, found from Hines, are roughly twice that). In both cases the correlation 

length of the scatterers is varied from 20m. (solid line) to 5m. (dashed line). For the 

longer correlation length the Goff-Jordan spectrum used contains significant energy at length 

scales longer than the acoustic wavelength (roughly 20 m.), and the resulting scattered 

field is strongly forward-directed. When the correlation length is decreased, the level of 

backscattered energy is increased for both surface and volume scattering. In addition, higher 

levels of scattering into the forward-scattered continuous spectrum modes are observed. 

These trends are also seen in spatial-domain results. Figures 4-14 and 4-15 show scat- 

tered field intensities on receiver arrays, for rough surface and volume scattering respec- 

tively. Vertical receiver arrays are located at the source range, to measure backscattering, 

and 2 km. away. Decreasing the correlation length increases the backscattering greatly, 

as predicted. For the longer correlation length, the forward scattered field is seen to be 

dominated by the proper modes. At this range the continuous spectrum modes have been 

stripped from the incident field. Because the correlation lengths are long the remaining 

proper modes are scattering with a fairly narrow angular spread, exciting mainly proper 
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Figure 4-12: Scattered field power spectral density; energy scattered from mode 1. Rough 
fluid bottom: 1 m. RMS height, Solid = 20 m. CL, Dash = 5 m. CL 
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Figure 4-13:  Scattered field power spectral density; energy scattered from mode 1.  Fluid 
bottom: random layer between [100 m., 120 m.]; a = .05. Solid = 20 m. CL, Dash = 5 m 
CL 
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BACKSCATTER FORWARD-SCATTER: R = 2 KM. 
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Figure 4-14: Back- and forward-scattered intensities on vertical arrays, rough fluid bottom. 
First plot at the source range, the second 2 km. away. 1 m. RMS height, Solid = 20 m. 
CL, Dash = 5 m. CL. Note more isotropic scattering for shorter correlation length. 

modes in the scattered field. This effect is similar to the idea of 'nearest neighbor' mode 

coupling often invoked in mode coupling theory. As the correlation length is decreased, the 

proper modes scatter into a broader angular spectrum, exciting more continuous spectrum 

modes in the scattered field. The effect of these higher modes is more clearly seen in the 

rough surface case than with the volume scattering layer. 

The effects of correlation length on the directionality of the scattered field have been 

discussed by a number of authors [11, 68]. What is new here is that the effect is shown for 

a modal propagation environment, and that the effects of changing correlation length on 

surface and volume scattering can be compared side by side. While there are differences in 

the scattered field levels, the overall trends are seen to be similar for both mechanisms. 

The examples so far have all assumed the roughness/fluctuation statistics are described 

by the Goff-Jordan power spectrum. This spectrum is believed to be realistic in that it 

describes a distribution of energy on many different length scales. In the scattering literature 

the Gaussian power spectrum has often been used because of its analytical simplicity, so 

it is interesting to see what difference the choice of power spectrum makes. Figure 4-16 

compares the Goff-Jordan and Gaussian spectra for a correlation length of 20 m. The 

most striking difference is that the Gaussian spectrum contains much less energy at large 

wavenumbers, i.e. is much smoother on small length scales. The power spectral density for 

scattering from a rough surface using the two spectra is shown in Fig. 4-17. The predicted 

levels are similar for forward scatter, but a huge difference is seen in backscattered levels. 

The Goff-Jordan levels are much higher, due to the higher levels assumed in the spectrum 
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BACKSCATTER FORWARD-SCATTER: R = 2 KM. 
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Figure 4-15: Back- and forward-scattered intensities on vertical arrays, volume scattering 
layer. The first is at the source range, the second 2 km. away. Scattering layer between 
[100 m., 120 m.] a = .05. Effects of correlation length are similar to rough bottom case. 
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Figure 4-16: Goff-Jordan (solid) and Gaussian (dashed) spectra for a correlation length of 
20 m., shown on a dB scale. Note the large differences for higher wavenumbers. 

for large wavenumbers. This difference is less dramatic for shorter correlation lengths - for 

example, for a correlation length of 10 m. the difference in backscattered energy levels is 

on the order of 12 dB. 

From these examples, it is clear that the directionality of the scattered field depends 

strongly on the correlation function and characteristic length scales of the scatterers. 

4.3    Effect of scattering mechanism 

The approach developed in this thesis allows us to directly compare the effects of surface and 

volume scattering from ocean bottoms. In this section the different scattering mechanisms 
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Figure 4-17: Power spectral density for scattering from mode 1 incident on a rough bottom, 
for the fluid-bottom scenario. Results for Goff-Jordan (solid) and Gaussian (dashed) spectra 
are shown. RMS roughness height is 1 m. and correlation length is 20 m. The choice of 
power spectrum has a strong effect on backscattering predicted levels. 

are compared, and the role played by density fluctuations in volume scattering is illustrated. 

4.3.1    Comparison of surface and volume scattering 

When comparing surface and volume bottom scattering, two basic questions can be asked. 

The first is: what is the relative importance of the two scattering mechanisms? Secondly, 

is there a basic difference between rough surface and volume scattering? The discussion 

in Chapter 1 concluded that, in many cases, rough surface scattering can be described in 

terms of volume scattering, or vice versa. This equivalence is tested below. 

The relative importance of seabed roughness vs. seabed volume inhomogeneities depends 

on the situation considered. In some environments rough surface scattering may dominate 

reverberation, while in others, for example when the bottom is fairly flat, volume scattering 

will be more important. The comparison must be made on a case-by-case basis. Figure 

4-18 compares volume and surface scattering for the fluid bottom scenario from section 4.1. 

A volume scattering layer is located in the top 10 m. of the sediment, with a = 0.05 and a 

5 m. correlation length. Interface scattering of the same order of magnitude is generated 

by setting RMS bottom roughness to 0.4m., for the same correlation length. For larger 

roughnesses interface scattering will dominate, and for smaller roughness volume scattering 

will be more important. 

Next we examine the second question, of whether there is a fundamental difference 

between surface and volume scattering. In the introduction, the problem of scattering from 
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Figure 4-18: Comparison of scattered field intensity from a water-sediment rough interface 
with RMS roughness 0.4 m., with scattered field from a 10 m. thick volume scattering layer 
(dashed line) with a = 0.05. Correlation length is 5 m. for both cases; fluid bottom scenario 

a stack of rough sediment layers was examined (see Fig. 1-4). The sediment is deposited 

in layers, so randomness in the seabed can be viewed either as roughness between layer 

interfaces or as volume fluctuations. Tang [77] has recently shown theoretically that the 

two descriptions are equivalent. 

We can use the code developed to check this prediction numerically, for scattering in 

the fluid bottom environment above. This requires that statistics for the volume scattering 

and rough surface stack be related. To do so, we use the ideas developed in Tang's work. 

The rough surface scattering theory is rewritten in terms of the sound speed and density 

differences across the interface, giving a form comparable to the volume scattering theory. 

The scattered field from a stack is given as a summation of the fields from all rough layers 

(assumed uncorrelated here, though not in Tang's work). This summation is converted into 

a depth integral, under the assumption that the separation between layers is small compared 

to a wavelength. The volume and surface scattering expressions can then be directly related. 

Tang shows that the relationship between the surface and volume parameters is given by: 

öCRMS(X,Z)    =   j(x,Zi)-   °}Zl' 

ÖPRMS(X,Z)     =     j(x,Zi) 

Az 

Az (4.1) 

where 6cRMS and 5pRMS are the volume fluctuations, 7(x, *) is the surface roughness at the 

»th rough interface in the stack, Ac and Ap are the differences in sound speed and density 

on either side of the rough interface, and Az is the separation between rough interface 
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water column 
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0.5 m.[ 

10 m. 

cb - 5c       p - 8 p sediment 
scattering 
layer 

homogeneous sediment 

c b = 1650 m/s,  p = 1.9 g/cmA3 

Figure 4-19: Sediment scattering layer modeled as a stack of rough interfaces. Sound speed 
and densities in the layers alternate as discussed in the text. RMS interface roughness is 
0.5 m., correlation length 5 m. 

depths. 

In the example below, sediment fluctuations are assumed to be located in the upper 

10 m. of the seabed. The fluctuation correlation length is assumed to be 5 m., and all 

other environmental parameters are as described in Figure 4-13. An equivalent stack of 

rough surfaces is modeled as shown in Fig. 4-19. The upper 10 m. of the seabed are 

divided into 20 layers, spaced 0.5 m. apart. The sound speed and density of each layer 

alternates around the average bottom properties. The water-sediment interface is smooth, 

but all of the sediment-sediment interfaces are rough, with a 5 m. correlation length. The 

sound speed and density changes between the rough layers are then set from the formula 

above. Unfortunately it is not totally clear how to choose the RMS roughness height; for 

the numerical example it is chosen to be half a meter as well. Scattering from all the rough 

interfaces are added up incoherently, and are compared to scattering from the volume layer 

in Fig. 4-20. The scattered field levels are seen to agree within an error of about 1 dB, 

which is reasonable given the approximate way in which the rough stack parameters were 

assigned. More importantly, the interference patterns in the two fields agree almost exactly. 

This shows that the relative scattered mode excitations generated by the two different 

mechanisms are the same, indicating that the underlying scattering physics are equivalent. 

4.3.2    Sound speed vs. density fluctuations in volume scattering 

In Chapter 3 the effect of including scattering from density variations as well as sound speed 

variations was examined. Density fluctuations were shown to generate scattering mainly in 

the backwards direction. The plots below show this conclusion remains true when waveguide 

effects are taken into account. Fig.   4-21 shows the expected increase in backscatter in both 
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Figure 4-20: Comparison of scattered field intensity from a 10 m. thick thick stack of rough 
sediment layers (solid line) and a 10 m. thick volume scattering layer (dashed). 

the wavenumber and spatial domains. Including density fluctuations is seen in Fig. 4-22 

to increase backscattered intensity on an array by more than 10 dB for the example chosen. 

This shows the importance of using the more complete scattering model. 

4.4    Waveguide and propagation effects 

From the results presented so far it is clear that locating the scatterers in a waveguide has a 

strong effect on both the scattered field excitation and the propagation of scattered energy. 

In this section these effects are examined in more detail. 

4.4.1    Scattered field excitation 

First we present a number of examples demonstrating the effect of the background sound 

speed profile on excitation of the scattered field. The first scenario, shown in Fig. 4-23 

compares scattering for the isovelocity limestone bottom example above with scattering 

when the sound speed profile is downward-refracting. The downward refraction causes the 

incident field to interact more strongly with the rough seafloor. Fig. 4-24 shows this has 

the expected effect of increasing the reverberant energy levels. 

The location the scattering elements in the waveguide also has a strong influence on the 

field generated. Here this point is illustrated by examining the result of changing the depth 

of a volume scattering layer in the seabed. At short ranges both proper and continuous 

spectrum modes are important in the incident field, while at longer ranges the continuous- 

spectrum modes are stripped away. Since the proper modes have only limited penetration 
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Figure 4-21: Power spectral density for field scattered from incident plane wave at angle 
of mode 1. Random layer between [100 m., 120 m.] depth; a = .05, CL = 5 m. Solid 
line shows scattering from both 5c and 5p, dashed line from 6c only. Including density 
fluctuations is seen to strongly increase backscatter. 
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Figure 4-22: Backscattered field intensity for same scenario as above. 
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; 
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Figure 4-23: Limestone bottom scenario, with isovelocity sound speed profile (solid line) 
and downward-refracting sound speed profile (dashed line). Bottom is rough with 1 m. 
RMS roughness and 20 m. correlation length 
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Figure 4-24:  Effect of sound speed profile gradient on scattered field intensity at 40 m. 
receiver depth. Downward refraction increases scattering. 
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Figure 4-25: Effect of volume scattering layer depth on scattered field excitation; receiver 
depth 50 m. Fluid bottom scenario; in scattering layer a — .05, and correlation length is 5 
m. Solid line shows scattered field intensity for scattering layer between [100 m., 120 m.]; 
dashed line shows intensity for layer between [110 m., 130 m.] 

into the bottom, they will not sense volume fluctuations deep in the seabed. This suggests 

that scatterers beneath the proper mode penetration depths contribute only weakly to long- 

range reverberation. Apparently this idea has been discussed previously by Dr. Weston, 

but this author has been unable to locate a reference. 

The effect of scatterer depth is illustrated numerically in Figure 4-25. We consider once 

again the fluid-bottom (sand) scenario from section 4.1. A volume scattering layer is first 

located in the upper 20 m. of the seabed, then is shifted down by 10 m. At short ranges, 

where the bottom-penetrating higher modes are important in the incident field, the effect 

of changing the layer depth is not too large. At longer ranges, however, only the proper 

modes are present in the incident field. Of these modes only mode 4 will penetrate very 

far into the lower scattering layer. As a result the scattered field levels observed at longer 

ranges drop substantially for the deeper scattering layer. 

4.4.2    Propagation of scattered field 

Once the scattered field is generated, it travels in the modes of the waveguide. As a result 

the scattered field contains as much or more information about the underlying modes of the 

waveguide as it does about the scattering process. We emphasize this point by examining 

the spatial correlation statistics of the scattered field. 

Scattering from seabed roughness in the fluid bottom example above is modeled first. 

An interface roughness of 1 m. RMS and correlation lengths of 5, 20 and 80 m. are assumed. 
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Figure 4-26: Normalized vertical correlation, range = 2 km. First receiver fixed at 50 m. 
depth, second is varying over water column. Correlation lengths of 5 m. (dashed line), 20 
m. (solid line) and 80 m. (dotted line) are shown. The vertical correlation is dominated by 
mode shapes. 

Figure 4-26 shows the vertical correlation of the scattered field at a range of 2 km. One 

receiver is fixed at a depth of 50 m., while the depth of the second is moved from the 

top to the bottom of the water column. The correlation structure is dominated by the 

mode shapes. For a correlation length of 5 m., some higher-order modes are present in the 

scattered field, as shown above. The vertical correlation has some added "wiggles" coming 

from the higher-order mode shapes. For correlation lengths of 20 or 80 m. the scattered 

field consists almost entirely of proper modes, so the vertical correlation length is almost 

unchanged. 

Figure 4-27 and Figure 4-28 show the horizontal correlation and coherence of the 

scattered field. One receiver is fixed at a range of 2 km., while the range of the second 

is varied; both receivers are at 50 m. depth. The correlation basically displays the modal 

structure of the field; both the small- and large- scale oscillations in Fig. 4-27 correspond to 

modal interference lengths. The coherence, in Fig. 4-28, basically picks out the envelope of 

the correlation. For the shortest correlation length higher-order modes are excited, giving a 

shorter length scale in the interference pattern. When the interference pattern is increased 

to 20 m. these higher modes have have little effect. The coherence is in general higher 

but the main lobe of the coherence has roughly the same width. For the extremely long 

correlation length of 80 m. the coherence is in general much higher. Thus the roughness 

correlation length has a larger effect on horizontal coherence than vertical coherence, but 

the horizontal statistics are clearly shaped by modal interference lengths. 
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Figure 4-27: Normalized horizontal correlation for 20 m. CL; receiver depths are 40 m. One 
receiver is fixed at 2 km range, second is moved in range 
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Figure 4-28: Horizontal coherence for situation above, but varying correlation lengths. Solid 
line for CL = 5 m., dotted line for CL = 20 m., dash-dot for CL 100 m. Note that changes 
are fairly small. 
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Figure 4-29: Mean field transmission loss, limestone scenario: (x, z) ocean. Source frequency 
is 50 Hz., source depth 40 m. 

4.4.3    Schölte wave excitation 

One of the main effects of bottom elasticity is the existence of an interface wave on the 

fluid- elastic boundary. This interface wave will not be present in the mean field unless the 

source is located very close to the bottom, but may be important or even dominant in the 

scattered field. 

To illustrate this point, the limestone bottom scenario above is used. The seafloor is 

assumed rough with a correlation length of 20 m. and RMS roughness of 1 m. The mean 

field (assuming an (x, z) scenario) is shown in Fig. 4-29 The proper modes interfere, giving 

a beam-like propagation pattern at longer ranges. The interface wave is not excited, as the 

source is far from the rough bottom. 

Figs. 4-30 shows the expected scattered field intensity in the water column, without 

including mode 1 (the Schölte wave) in the modal summation. Thus the result is close to 

what we would expect if the bottom was represented as a fluid. Roughness at ranges when 

the mean field hitting the bottom is strong (for example, at about 1.2 km.) give rise to 

higher levels of scattering. Fig. 4-31 shows the same plot, but with the interface wave 

included. This suggests that excitation of the interface mode can be the dominant feature of 

the scattered field near the bottom. 

4.5    Scattering from a single incident mode 

In recent years researchers at Woods Hole Oceanographic have been developing techniques 

for using a vertical array to excite a single mode for shallow water experiments [8]. Single- 
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Figure 4-30: Scattered field intensities for limestone bottom scenario, CL = 20 m., without 
including Schölte wave 
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Figure 4-31: Scattered field intensities for limestone bottom scenario, CL = 20 m., Schölte 
wave included in modal sum. Note dominance of Schölte mode near the bottom 
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mode excitation would allow more detailed experimental study of modal scattering, as 

individual mode-to-mode scattering paths could be separated out. Such scattering exper- 

iments can be modeled using NMSCAT. The results, shown below, also demonstrate that 

nearest-neighbor mode coupling is often weaker than coupling between more widely sepa- 

rated modes. 

We first consider scattering from the rough fluid bottom example above. Figs. 4-32 and 

4-33 show scattered field modal powers vs. range for incident modes 1 and 6, respectively. 

The modal composition of the scattered fields are clearly quite different. 

In Fig. 4-32, mode 1 scatters most strongly into the other propagating modes. Since 

mode 1 decays very slowly, it continues to excite the scattered modes at ranges far from 

the source. The other proper modes are also lightly damped, so the scattered energy in 

these modes grows with range. Interestingly, mode 1 scatters most strongly into mode 4. 

The reason for this can be seen by examining the expressions for the scattering kernels 

given in Chapter 2. The strength of the scattering depends on the values of the incident 

and scattered modes and their derivatives at the rough interface, modulated by the power 

spectrum at the wavenumber difference: P(qn — km). In this example the Goff-Jordan power 

spectrum is broad enough that mode 4, which has a larger slope at the rough interface, is 

more strongly excited than modes closer to the incident mode. 

Figure 4-33 shows scattering out of an incident mode 6. The incident mode is leaky, 

and does not survive to very long ranges. Mode 6 scatters predominantly into nearby leaky 

modes, which are also quickly damped. These modes are very strongly excited, however. 

At longer ranges the strongest scattered field energy is in mode 4. This mode is only weakly 

excited near the source, but the energy trapped in mode 4 is attenuated much more slowly. 

It can be argued that scattering and/or coupling between neighboring modes should 

be dominant, since the power spectrum gives the highest values for small wavenumber 

differences. The examples above show this argument is valid in a rough sense, as higher- 

order modes scatter preferentially into other high-order modes and low-order modes scatter 

into other low-order modes. However, the exact distribution of energy is more complicated. 

In general there is a tendency for modes to scatter more strongly into higher modes. 

To illustrate this point we consider several more examples. Figure 4-34 again shows 

scattering from incident mode 1, but with a correlation length of 100 m. The power spectrum 

is much narrower, and as a result scattering from mode 1 into mode 2 is strongest. Scattering 

from mode 1 into itself is still low, due to the small values of mode 1 and it's slope at the 

interface. This example suggests that nearest-neighbor mode coupling might be expected to 
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Figure 4-32: Scattered mode powers vs. range for incident mode 1; fast fluid bottom 
scenario, 1 m. RMS roughness height, 20 m. correlation length. 

be dominant when scatterer correlation lengths are long. Figure 4-35 shows the scattered 

field mode powers for mode 4 incident, with a roughness correlation length of 20 m. At 

short ranges mode 4, the highest propagating mode, is seen to scatter most strongly into 

itself and its neighbors. At short ranges mode 5 is strongly excited, but the energy in this 

leaky mode decays due to radiation into the bottom. In contrast mode 3 is more weakly 

excited at short ranges, but contains more energy at longer ranges as the energy in mode 

3 is trapped in the waveguide. Thus we see that the distribution of energy among modes 

depends on the roughness statistics, modal attenuations and propagation, and scattering 

mechanism. 

Figure 4-36 shows the total expected scattered field intensity generated by a single 

incident mode. Scattering from mode 1 (solid line) is compared with scattering out of mode 

6 (dashed line) for a plane geometry. The scattered field generated by mode 1 consists 

primarily of proper modes, as seen above. The scattered energy is trapped within the 

water column, so the intensity grows with range. In contrast, mode 6 scatters mainly into 

continuous spectrum modes, which lose energy rapidly in the bottom. Thus the scattering 

from mode 6 is dominant at short ranges but decays rapidly. In general we can expect that 

scattering out of continuous spectrum modes may dominate the scattered field at short 

ranges, but scattering from proper modes will be dominant at long ranges. 

In previous sections we have noted that scattered fields generated by rough surfaces 
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Figure 4-33: Scattered mode powers vs. range for incident mode 6; same scenario as above. 
Note higher modes are strongly excited, but die out quickly 
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Figure 4-34: Scattered mode powers vs. range for incident mode 1; 100 m. roughness 
correlation length, otherwise same scenario as above. Nearest-neighbor mode coupling is a 
better approximation for this case. 
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Figure 4-35:   Scattered mode powers vs.   range for incident mode 4; 20 m.   roughness 
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Figure 4-36:  Scattered field intensity for single incident mode; solid line shows scattering 
from incident mode 1, dashed line shows scattering from incident mode 6. 
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Figure 4-37: Volume scattering: mode power vs. range for incident mode 1; fast fluid 
bottom scenario, random sediment layer between [100 m., 120 m.]. Fluctuation correlation 
length is 20 m., a = 0.05. Note similarity to mode excitation by rough surface scattering. 

and volume inhomogeneities are similar in nature. In Chapter 1 it was argued that the 

distinction between rough surface and volume scattering is often unclear, as the scattering 

physics for many problems can be described in either framework. This similarity is clearly 

seen when comparing Figure 4-37, which shows mode power for scattering from mode 

1 incident on a bottom containing volume inhomogeneities, with Fig. 4-32 above. For 

both cases the correlation length of the scatterers is set to 20 meters. The powers of the 

proper modes (1-4) are seen to be qualitatively quite similar. In the sediment scattering 

case the continuous spectrum is represented by a sum of false-bottom modes, rather than 

leaky modes. Thus it is difficult to compare mode excitations for the continuous spectrum 

modes, as many more false bottom modes are present. 

Figure 4-38 shows the scattered field intensity for energy scattered out of mode 1 by 

the scattering layer. The shape of the curve is quite similar to that seen in Figure 4-36 for 

rough surface scattering, though the levels are lower. 

4.6    Total field statistics 

So far results for the scattered field alone have been presented. In experimental measure- 

ments the total acoustic field is measured, and scattered field statistics are inferred indirectly. 

In this section results for the total field energy and coherence are presented.  This allows 
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Figure 4-38: Volume scattering: intensity of field scattered from incident mode 1; same 
scenario as previous plot. 

us to see in what situations scattering has the largest effect in terms of causing a loss of 

coherence of the acoustic field. The main conclusion is that the effects of scattering depend 

strongly on the bottom type. 

In order to find total field statistics we must find the scattering loss experienced by 

the mean field. For volume scattering a 2D version of the eigenvalue perturbation method 

described in Chapter 3 is used. To find scattering loss due to interfacial roughness, OASES 

is used to find mean field reflection coefficients including scattering loss. These reflection 

coefficients can be input to KRAKEN as a boundary condition. The resulting mode atten- 

uations are subtracted from those found by KRAKEN for the unperturbed case, giving the 

modal scattering loss. 

As mentioned above, the effects of scattering are found to depend on the bottom type. 

To illustrate this for rough surface scattering we compare the highest-impedance example 

above, the basalt bottom, with the much lower-impedance sand bottom. Figures 4-39 

and 4-40 show the mean field intensity, with and without scattering loss, and the scattered 

field intensity for the basalt and sand bottoms respectively. The effects of the mean field 

scattering loss are seen by comparing the unperturbed (Born approximation) mean field 

(dotted line) with the self-consistent mean field calculation (solid line). For both scenarios 

the scattering loss has a noticeable effect. In the basalt case the scattering loss is seen to 

strip all but the lowest two modes, changing the mean field interference pattern as well as 
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Range, km. 

Figure 4-39: Basalt bottom scenario: mean field intensity from the Born (dotted) and self- 
consistent (solid) calculations, and scattered field intensity (dashed line). Receiver depth 
is 75 m., RMS bottom roughness is 2 m., and correlation length is 50 m. Note that the 
influence of the scattered energy grows with range 

its amplitude. 

The more interesting difference is seen for the scattered field intensities (dashed line). 

In the basalt bottom case there is little radiation into the bottom, so nearly all scattered 

energy is trapped in the water column. The scattered field grows with range as more and 

more scattering area is added, eventually becoming comparable in strength to the mean 

field. For the fluid bottom case, in contrast, much of the scattering is into continuous 

spectrum modes which transmit energy out of the water column into the ocean bottom. As 

a result the scattered field actually decays faster than the mean field, and always remains 

much weaker than the mean field. 

This difference in bottom type results in very different changes for the total field co- 

herence vs. range. For the basalt bottom, the scattered and total field vertical coherences 

are shown in Fig. 4-41 and 4-42 for ranges of 1 and 4 km. respectively. If there were 

no scattering the total field coherence would be unity at all depths. Instead, the total field 

coherence is strongly affected by the scattered field coherence, and becomes closer to it with 

increasing range. As the scattered field strength grows with range the total field coherence 

drops, with a pattern determined by the mode shapes of the scattered field. 

Figures 4-43 and 4-44 show the total field vertical coherence alone at the same ranges. 

Since the scattered field is much weaker compared to the mean field, the coherence is much 

higher. Moreover, since the scattered field decays more rapidly than the mean field, total 

field coherence is seen to actually grow with range. This phenomenon has been discussed 

by Dozier [15] in relation to shallow-water data. 
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Figure 4-40: Sand bottom scenario: mean field intensity from the Born (dotted) and self- 
consistent (solid) calculations, and scattered field intensity (dashed line). Receiver depth 
is 50 m., RMS bottom roughness is 2 m., and correlation length is 20 m. Scattered field 
decays faster than mean field 
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Figure 4-41: Scattered (dashed) and total (solid) field vertical coherences, basalt bottom 
case, at a range of 1 km. 
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Figure 4-42: Scattered (dashed) and total (solid) field vertical coherences, basalt bottom 
case, at a range of 4 km. Total field coherence decreases with range 
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Figure 4-43: Total field vertical coherence, fluid bottom case, at a range of 1 km. 

ertical Coherence 
1   1.01 

Figure 4-44: Total field vertical coherence, fluid bottom case, at a range of 4 km. Coherence 
grows with range. 
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Figure 4-45: Effect of re-scattering loss on scattered field: fluid bottom scenario, higher loss 
bottom. Solid: first order scattered field; Dashed: scattered field with scattering loss to 
higher order scattered fields 

4.6.1    Importance of multiple scattering 

The scattered field energy will re-scatter as it travels in the waveguide. This re-scattering 

will change the energy distribution among scattered field modes. In addition, since there is 

a general tendency for lower-order modes to scatter more strongly into the more strongly 

attenuated higher modes, the total scattered field energy in the waveguide will be decreased 

somewhat. 

These effects cannot be captured using the present single-scatter theory. However, we 

can use the tools developed to identify situations in which multiple scattering should be 

important. Physically, we expect the scattering loss from the first-order scattered field to 

occur at roughly the same rate as the scattering loss from the mean field into the first- 

order scattered field. This scattering loss can be included from the mean field attenuation 

coefficients found earlier. Figs. 4-45 and 4-46 show the scattered field intensity, with 

and without this "re-scattering loss", for the fluid and basalt bottom scenarios discussed 

above. In some sense the two curves can be considered to be upper and lower bounds for 

the scattered field. More generally, the difference between the curves is indicative of the 

importance of multiple scattering. From the figures below we see that the effect of re- 

scattering is fairly weak for the fluid bottom, but much stronger for the basalt bottom. In 

the fluid bottom case, the higher bottom attenuation prevents the scattered field generated 

at any point from traveling too far, so multiple scattering is less signifigant. For the basalt 

bottom nearly all scattered energy is trapped in the bottom, and is available to re-scatter. 

It is important to stress that the existence of multiple scattering does not fundamentally 
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Range, km. 

Figure 4-46: Effect of re-scattering loss on scattered field: basalt bottom scenario. Solid: 
first order scattered field; Dashed: scattered field with scattering loss to higher order scat- 
tered fields 

change the discussion above about the importance of bottom type. For the basalt bottom 

case, re-scattered energy will be trapped in the water column just as the scattered field 

is, and will be attenuated only lightly. The total scattered energy in the water column 

(both single- and multiple-scattered sound) will grow with range. This results from the fact 

that this is nearly a conservative system, so from energy conservation the total scattered 

energy must increase with range to account for scattering loss from the mean field. A 

prediction from multiple-scattering theory should thus lie much closer to the upper curve 

in Fig. 4-46 than the lower curve. The main result of re-scattering for this example will be 

a redistribution of energy, with higher modes having larger amplitudes than predicted by 

the single scatter theory. 

For the fluid bottom case, re-scattering will again direct more energy into the higher 

modes. Since these modes are very highly attenuated in this example (most are leaky) 

the total scattered field intensity will be reduced, and will lie somewhere between the two 

curves. 

4.6.2    Cross-modal coherences 

The cross-modal coherences defined in Chapter 2 give a more systematic way of looking 

at field coherence. Cross-modal coherences, as a function of range, for each of the three 

bottom scenarios are shown below and discussed. 

Fig. 4-47 shows the normalized forward-scattered and total field cross-modal coherences 

for the fluid bottom scenario at ranges of 0.5, 5, and 20 km.   The information in these 
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pictures helps us understand the evolution of the field with range. At the shortest range 

the forward-scattered field is very weak, and continuous spectrum modes have not yet been 

stripped from the incident field. As a result the coherence of all modes, including the leaky 

modes, is quite high. By 4 km. most of the higher-mode energy in the incident field has 

been attenuated away. The cross-modal coherences of the higher modes for the total field 

resemble those for the scattered field, showing that only scattered field energy is in these 

modes. At 20 km. the same pattern is seen, though now only the four proper modes 

remain in the mean field. However, the cross-coherence of the proper modes is nearly one, 

indicating that, for these modes, the mean field is much stronger than the scattered field. 

This agrees with our discussion above, which showed the mean field was dominant when 

the spatial correlations of the field were calculated. 

Since the cross-modal coherences are non-negligible even at 20 km., a fairly long range 

for such a shallow ocean, the question arises as to whether the mode coherences ever totally 

decay. Figure 4-48, which shows the cross-modal coherences at a range of 50 km., shows 

that the modes become incoherent at long ranges. This may at first seem puzzling, since 

the scattered field is so much weaker than the incident field for this case. From Fig. 4-49, 

we see that at ranges beyond 20 km. only mode 1 remains in the mode field, as all higher 

modes have attenuated away. Any energy in modes higher than 1 is thus in the scattered 

field, so cross-modal coherences are low. However, the scattered field is so much weaker 

than the mean field that the total field statistics will effectively be set by the single mean 

field mode. 

Figure 4-50 shows the same plots for the limestone bottom scenario, again for ranges of 

0.5, 5, and 20 km. The longer spacing is chosen because the field is changing more slowly. 

At the short range total field coherence is shown to be high, except for mode 1. Mode 1 in 

this example is the Schölte wave, which is present only in the scattered field. At the longer 

ranges the higher mean field modes are being attenuated away, and most of the energy in 

these modes is scattered field energy. This is seen in the fact that the total field cross-modal 

coherences for the higher modes have the same pattern as the scattered field modes. For this 

example KRAKEN did not find any continuous spectrum modes, so all 7 modes are proper. 

The increasing loss of total field coherence between 5 and 20 km shows that the scattering is 

having a significant effect. This is to be expected , since the limestone bottom is fairly hard. 

From the discussion above, most of the scattered field energy is trapped within the water 

column rather than radiated into the bottom. By 20 km. the cross-modal coherence matrix 

is nearly diagonal, meaning all modes are incoherent. Several mode coupling theories, such 

122 



T3 
O 
§ 

1    2    3    UoheS    7    8 

a) Scattered field XMC, r = .5 km 

1    2    3    Uohei    7    8 

b) Scattered field XMC, r = 5 km. 

1     2     3 

c) Scattered 
koäel 

field XMC, 

7 

= 20 km. 

o 

^Sftftif*"'* "*r :**r "T^h " ***! I 

Wtel    7    8    9 

c) Total field XMC, r = .5 km. e) Total field XMC, r = 5 km. 

y '     ■ "■   -.'"'?■ #?T«IH 

0 8 0 
-3 

7 ■■ 't^S^\ -i 
-6 " ^■r^x*jM^**v''' -6 

-9    * 
-12   | 
-15   S 

6 

5 

4 

-tmsßw'' ■■■■■ -9 
-12 
-15 

-18 -18 
-21 

3 fiÖRp -21 
-24 2 -24 

2    3    Wlel    7    8    9 

f) Total field XMC, r = 20 km. 

Figure 4-47: Cross-modal expectations (XMC) for fluid bottom scenario 

Figure 4-48: Cross-modal expectations for fluid bottom scenario, at 50 km. 
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Figure 4-49: Self-consistent mean and scattered field levels at long ranges 

as that of Dozier and Tappert [16], assume the modes to be incoherent. NMSCAT can be 

used to find the ranges at which this assumption is correct. 

Figure 4-51 shows cross-modal coherences for the basalt bottom scenario. Although 

the basalt bottom is elastic, KRAKEN did not locate an interface wave for this example. 

Otherwise the results are similar to those for the limestone bottom, although the harder 

bottom causes the coherence loss to be noticeable even at the shortest range. The coherence 

of the total field drops steadily with range, showing the increasing relative strength of 

the scattered field. For even longer ranges the cross-modal coherence matrix will become 

effectively diagonal. 

4.7    Backscattered intensity from transmitted pulse 

In Chapter 2 results were derived for expected backscattered intensity as a function of time. 

The calculation neglected out-of-phase contributions, giving a smoothed result similar to 

the use of an incoherent modal summation in finding transmission loss. This smoothed 

time record captures the overall envelope of the backscattered time series, and helps give 

physical insight into the back-scattering process. 

Figures 4-52 and 4-53 show backscattered time series for the fast fluid bottom waveguide 

modeled above. The ocean bottom is at 100m. in both cases; backscattered energy on a 

receiver array at the source range is plotted in the water column and the upper 30 m. of the 

bottom. The ocean is assumed to be cylindrically symmetric, with a bottom attenuation of 

0.2dB/X and inhomogeneity correlation length of 5m. All other parameters are as in section 

4.1. In Fig. 4-52 backscattering from a rough fluid bottom with lm. RMS roughness is 

shown.  A pulse of 0.5 sec.  duration and a center frequency of 70 Hz.  is broadcast.  The 
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expected backscattered intensity is plotted, starting immediately after the pulse has been 

transmitted. The highest levels are received in the first second or so, and is contained 

in the continuous spectrum modes. After a few seconds the received energy is contained 

almost entirely in the proper modes; mode 4 is the highest proper mode present, and is 

seen to be dominant in the time series. Reverberation at these longer times is generated at 

regions farther from the source, and only the proper modes have low enough attenuation 

to propagate to and from the scattering site without being stripped. This phenomenon has 

been described by Urick [83, p. 281] in discussing experimental shallow-water reverberation 

data. 

Figure 4-53 shows scattering in the same waveguide, but for volume scattering from 

a random layer in the upper 20 m. of the sediment bottom (between 100 m. and 120 m. 

depth). The correlation length is again 5m., and a - 0.05. At short times the reverberation 

is again dominated by the high-angle continuous spectrum modes. The energy in these 

modes is predominantly in the bottom, indicating that the high-angle scattered energy is 

not coupling into the water column well. At longer times the evanescent decay of the proper 

modes in the bottom is observed. Comparing these two plots, the scattered field generated 

by the volume scattering is seen to fall off more quickly with range. This reflects the fact 

that the proper modes, dominant at longer times, do not penetrate into the bottom well. 

Figure 4-54 shows backscattered energy from a rough limestone bottom, the same sce- 

nario shown in section 4.2.1. Roughness correlation length is again 5m., and the RMS 

roughness height is lm.Receivers are located in the water column only. The main features 

of the plot are similar, with continuous spectrum energy dominating the early arrivals and 

the proper modes (mode 3 is the highest proper mode) dominating later arrivals. However, 

between 2 and 4 seconds, higher backscattering levels are visible on the hydrophones be- 

tween 80-100 m. This corresponds to energy scattered into the Schölte wave which exists 

on the fluid-elastic interface. For this example KRAKEN finds the Schölte mode to have 

an attenuation in between that of the proper and continuous spectrum modes, explaining 

its decay rate in time. 

The figures above were plotted using the Born approximation; attenuation of the out- 

going mean field due to scattering was ignored. In Fig. 4-55 the self-consistent correction 

is included, and its effect is seen to be fairly small. For the sediment scattering case shown 

above the effect is even smaller. In other cases, however, the added attenuation may be 

significant. 
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Figure 4-52: Backscattered intensity vs. time for rough fluid bottom. Pulse duration is 
0.5 sec, center frequency 70 Hz.; RMS roughness = 1 m., 5 m. correlation length. Proper 
modes dominate at longer times. 
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Figure 4-53: Backscattered intensity vs. time for fluid bottom with random layer in upper 
20 m. of bottom [100-120 m.]. 0.5 sec pulse centered at 70 Hz.; a = 0.05, CL = 5 m. 
Received intensity plotted also in the sediment bottom; note early continuous- spectrum 
energy is largely trapped in bottom. 
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Figure 4-54: Backscattered intensity vs. time for rough limestone bottom. 0.75 sec pulse 
centered at 50 Hz.; RMS roughness = 1 m., CL = 5 m. Schölte mode energy can be seen 
in first 5 sec. 

Figure 4-55: Self-consistent vs. Born calculations for backscattered intensity. Rough fluid 
bottom, (r, z) geometry, 50 m. receiver depth, other parameters as before. Mean-field mode 
attenuation due to scattering has only a small effect on backscattering levels. 
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4.8    Summary 

The scattering theories developed in Chapters 2 and 3 have been implemented in a modal 

reverberation code, NMSCAT. This code serves as a numerical laboratory in which the 

effects of surface and volume scattering can be studied. 

The numerical results presented allow the modeler to study a number of different factors 

in the reverberation problem. First, scattering generated by different types of scatterers - 

rough fluid interfaces, rough elastic interfaces, and volume fluctuations in a fluid bottom - 

were compared. As argued in Chapter 1, no large differences in the character of scattering 

from fluid rough interfaces and volume fluctuations were seen. Scattering from random- 

ness in the sediment was seen to be equivalent whether described as volume scattering or 

as scattering from a stack of rough interfaces. Including bottom elasticity was shown to 

potentially give large changes in field predictions, due to scattering into the fluid-elastic 

interface wave. Second, the effect of roughness and/or fluctuation statistics was examined. 

The directionality of the scattered field was seen to depend strongly on the choice of power 

spectrum as well as the horizontal correlation length. Finally, waveguide propagation effects 

were shown to be extremely important. The total field coherence in the ocean appears to 

depend strongly on bottom type. Time domain results allowed further understanding of the 

roles played by different types of modes - proper, continuous spectrum, and Schölte modes 

- in backscattering. 
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Chapter 5 

Long-range Arctic propagation 

Recently an international effort has begun to test the feasibility of acoustically monitoring 

the climate of the Arctic Ocean. The permanent ice cover in the central Arctic makes it 

difficult to obtain oceanographic data, and as a result the Arctic is much less well understood 

than the temperate oceans. Acoustic tomography is attractive as it provides a possible 

means for synoptic measurements of Arctic Ocean properties. Monitoring of the Arctic 

is of special interest since many global climate models predict that the Arctic should be 

especially sensitive to any global warming [56]. The reason for this is that the total volume 

of the ice cover is much less than that of the ocean it covers. Thus even a relatively small 

warming of the Arctic, which would likely come as a result of an influx of warmer water 

from the Atlantic, could have a large effect on the ice cover. A substantial melting of the ice 

cover would in turn affect the global climate, as the presence of the ice changes the albedo 

of the polar regions, as well as damping ocean/atmosphere exchange [28]. 

Earlier studies [56, 22, 21] show that at low frequencies the acoustic phase and travel 

time are relatively insensitive to changes in the ice cover, while amplitude attenuation is 

strongly affected by changes in ice thickness and roughness. These results are re-confirmed 

below. Previous analysis also indicates that internal wave levels in the Arctic are low enough 

not to cause large travel time fluctuations [56]. Thus it might be possible to use travel time 

information to invert for water mass temperatures, and modal attenuations to estimate the 

parameters of the ice cover. 

Acoustic monitoring of Arctic climate was proposed in 1991 by a group at Science 

Applications International Corp (SAIC) [56]. This led to a trans-Arctic propagation (TAP) 

feasibility experiment involving US, Canadian, and Russian research groups. From April 

17-22 1994, CW and coded maximal length sequence (MLS) transmissions were broadcast 
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Figure 5-1: April '94 feasibility test source was at Turpan camp (83 30.0' N, 26 0.0' E, north 
of Svalbard); receiver camps were Narwhal ( 83 52.5' N, 62 52.9' W, Lincoln Sea) and Simi 
(72 59.9' N, 149 35.8' W , Beaufort Sea) 

from the Russian ice camp 'Turpan' (see Fig. 5.1) and received on a vertical array the 

US/Canadian ice camp 'Narwhal' (900 km. range) and on vertical and horizontal arrays 

at the MIT/WHOI ice camp 'Simi' (2600 km range). Most transmissions were centered 

around 19.6 Hz and had a duration of one hour. Results so far show the phase along the 

2600 km. path was quite stable, giving excellent travel time resolution. 

In this chapter we focus on developing modeling tools to help understand the results 

of this and future trans-Arctic experiments. The Arctic Ocean is acoustically distinctive 

because the sound speed increases monotonically with depth. This causes sound to be 

refracted upward, interacting with the rough ice cover. This scattering problem must be 

well understood in order to model long-range propagation. The KS perturbation scattering 

theory described earlier has been extended by LePage & Schmidt [47] to consider scattering 

from a three-dimensional rough ice sheet. This work showed the importance of scattering 

into the flexural wave of the ice sheet and was used to show good agreement with previ- 

ous data for long-range transmission loss in the Arctic. In this chapter LePage's work is 

extended slightly and is used to study the effects of a changing ice cover on trans-Arctic 

propagation. After a discussion of the acoustical environment in the Arctic, a parameter 

study is presented which shows the sensitivity of modal group speeds and attenuations to 

ice parameters.  Time series simulations are then made and compared to TAP data.  It is 
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shown that use of historical sound speed data gives travel time predictions which are slower 

than those observed. However, there is recent evidence of warming in the eastern Arctic, 

and simulations including this effect should agree more closely with the data. Finally, we 

compare predictions of the LePage/Schmidt ice scattering model with those obtained with 

the impedance scattering theory of Kudryashov et al. [42]. Earlier comparisons of the 

two theories had shown very close agreement, giving the impression that the scattering 

process was well understood. A closer examination shows that the agreement seems to 

be coincidental, and that actually the two theories are modeling slightly different physical 

scenarios. 

5.1    Acoustical environment in the Arctic 

In this section we describe the environment in more detail, concentrating first on the 

oceanography and second on typical properties of the ice cover. Overviews of Arctic circula- 

tion and water masses can be found in Pickard and Emery [63] and Carmack [10, p.171-222], 

and an excellent discussion of ice in the Arctic is given by Gow and Tucker [28, p.47-122]. 

5.1.1    Arctic oceanography 

From Figure 5.1 we can see that the main channel which connects the Arctic to the other 

oceans is through the Fram Strait, between Svalbard and Greenland. The West Spitzbergen 

Current (WSC), which passes through this strait, is the main inflow of water into the Arctic. 

Relatively warm and salty Atlantic water flows into the Arctic in this current. Yearly 

variations in the inflow of Atlantic water can be fairly large [21]. On entering the Arctic 

the Atlantic water cools rapidly but remains warmer than most Arctic water. In the central 

Arctic the WSC appears to split into several branches. The main outflow from the Arctic 

is in the East Greenland current (EGC), which also flows through the Fram Strait. The 

EGC carries water at all depths. In the region of the Fram Strait there appears to be 

some recirculation of the Atlantic water, with some portion of the Atlantic water which has 

circulated through the Arctic mixed back in, while the rest exits in the EGC. 

The water masses in the Arctic can be divided into three layers. The first 200 m. or 

so in depth are known as the surface layer. This water is quite cold, close to the freezing 

point, and is strongly influenced in salinity by river runoff and by the melting and freezing 

of the ice cover. The Atlantic water is roughly between 200-800 meters, and is carried into 

the Arctic by the WSC. The lower deep water makes up about 60% of the Arctic Ocean by 
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Figure 5-2:   GDEM sound speed database.   Sounds speeds plotted from source (left) to 
receiver(right) 

volume. It is divided into several water masses by bathymetry. 

These different water types are seen in Fig. 5.2, which shows sound speed data along the 

TAP propagation path taken from the Generalized Digital Environment Model (GDEM) 

[79]. The bathymetry along the path is also shown. Near 800 km. the path intersects 

the Lomonsov ridge, which divides the Arctic into the Eurasian basin (source side) and 

the Canadian basin (receiver side). The cooling of the Atlantic water as it travels into the 

Arctic can be seen in the early part of the path. The Atlantic water loses more energy to the 

surface, which is colder than the deep water below it, causing the temperature maximum to 

become deeper. A front has been observed near the Lomonosov ridge, as seen on the plot. 

In the Canadian basin the deep water is somewhat warmer, giving a higher sound speed. 

This effect is more easily seen in Fig. 5.3, which shows individual sound speed profiles at 

the source and the receiver. We can also see that the cooling of the Atlantic water has 

caused the near-surface acoustic duct to become thicker but less clearly defined. 

Recent icebreaker [9] and submarine data has shown that the front near the Lomonsov 

ridge has recently shifted towards the Canadian basin, and that the Atlantic water in the 

Eurasian basin is warmer than shown in the GDEM data. Pawlowicz [61] has explained 

these changes by arguing that the recirculation of Atlantic water in the Fram Strait area 

is partly controlled by the location of the front near the Lomonosov ridge. A shift in 

the frontal location could cause more Atlantic water to be recirculated, causing an overall 

warming trend in the Eurasian basin water. 
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Figure 5-3: Source and receiver sound speed profiles. Source profile = solid, receiver profile 
= dashed 

5.1.2    Ice cover model 

In the central Arctic the ice covers around 99% of the ocean during the winter and 80 - 90% 

in the summer. This ice can be divided by age into first-year and multi-year ice. First-year 

ice is generally about 1 meter in thickness. As several years pass the ice becomes thicker 

and stronger, with the mean thickness for multi-year ice being around 3-4 meters. The 

ice forms into large sections, or floes, whose circulation is driven by currents and wind. 

Substantial variations in ice thickness can be found in any given area. These differences 

can develop as gaps, or leads, between adjoining ice sheets open up and then freeze over. 

Adjacent floes may also be of different ages and have different thicknesses. Small scale 

roughness is introduced by fractures in the ice and by dendritic growths on the bottom of 

the ice resulting from rejection of salt as the water freezes. Larger scale features such as 

ridges may result when floes are driven up against each other, deforming the ice sheets. 

Ridges with thicknesses up of to 10 meters have been observed. Histograms of ice thickness 

show all these types of ice. A small peak in ice thickness at around 1 meter is observed, 

corresponding to first year ice. Most ice measured is at around 3-4 m. thickness, but there 

is a long tail to the histogram corresponding to deformed ice with very large thickness. 

The model for the ice sheet used for these calculations is shown in Fig. 5.4. The 

nominal ice thickness is taken to be 4 meters. The compressional and shear wave speeds 

and attenuations in the ice are typical of those found in experimental studies [84, 57]. We 

note that these ice attenuations are much larger than those measured in laboratory studies 

of wave propagation in ice. The increase in in situ attenuation is believed to come from 

friction at small-scale fractures of the ice sheet. The roughness on the top and bottom of the 

135 



Air c = 340 m/s, p= 0.001 g/cmA3 

cp = 3500 m/s 
Ice sheet       cs = i750m/s 

ocp = 1 dB/ X 

p=0.91g/cm*3     «s=2.5dB/^ 
4 m. 

Water c = 1410 m/s  p = 1 g/cmA3 

Figure 5-4: Nominal ice parameter values 

ice sheet is described by a Goff-Jordan power law spectrum. The RMS roughness is taken 

to change with ice thickness according to the empirical relation ORMS = 0.65if [22]. The 

top and bottom roughnesses are assumed to be uncorrelated, with the rms top roughness 

being one-quarter that of the bottom. In actual fact the top and bottom roughnesses will be 

somewhat correlated, but assuming the correlation is zero greatly simplifies the calculations 

involved. 

5.2    Sensitivity of coherent field propagation 

LePage and Schmidt's model can be used to study the sensitivity of modal attenuations 

and group speeds on parameters of the ice cover. Kevin LePage's SELFCON code was used 

with the nominal ice parameters above to calculate the coherent field reflection coefficient, 

which is used as a boundary condition input to the normal mode code KRAKEN. LePage's 

code was modified slightly to include the effects of attenuation in the ice sheet and different 

top and bottom roughness heights. 

Figure 5.3 showed the existence of a strong Arctic surface duct. The low order modes are 

trapped in the duct, while higher-order modes interfere to form a convergence zone pattern. 

Due to this constant interaction we expect the lowest modes to be stripped by scattering 

from the rough ice sheet. The sensitivity of coherent field propagation to variations in sound 

speed and ice parameters is examined below. 
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Mode# 

Figure 5-5: Dependence of mode attenuation on sound speed profile. Solid line uses receiver 
SSP; 5 dotted lines from 5 days of measured SSP at Turpan source camp 

5.2.1 Sensitivity to sound speed profile variation 

Sound speed profiles at the source were measured during the five days transmissions were 

carried out. We can use these data to get some idea of the effect of short-term variations 

in the sound velocity profile. The plots below show mode attenuations and group velocities 

for the nominal ice parameters. The five sound speed profiles at the source are used and 

compared to a sound speed profile at the receiver. Daily variability at the Turpan camp 

during the experiment is seen to give only small changes in propagation. On the other hand, 

the effect of the different water masses at the source and receiver is quite strong. Near the 

source only mode 1 is trapped in the surface duct, while near the receiver modes 1 and 2 are 

m the duct, meaning mode 2 experiences more ice interaction and as a result is attenuated 

more rapidly. 

5.2.2 Sensitivity to ice parameters 

Ice parameters were varied around the nominal values shown above! Historical sound speed 

data for the source location are used to model acoustic propagation. Order of magnitude 

results (see Table 5.1) show that modal attenuations Aßn and group speeds Acg are far 

more sensitive to roughness parameters than to wave speeds or attenuation in the ice. These 

results seem to be qualitatively similar to the results of a parameter study done using the 

impedance scattering theory [21], but we predict a greater sensitivity to thickness. 

Figures 5.7 and 5.8 show mode attenuations and group speeds as thickness and rough- 

ness correlation lengths are varied.   As mentioned above ice roughness is assumed to be 
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Mode# 

Figure 5-6: Dependence of modal group speeds on sound speed profile, same profiles as 
above 

proportional to ice thickness. This increasing roughness is mostly responsible for increases 

in mode attenuation seen for increasing thickness, while changes in group speed are due to 

thickness change directly. The largest changes are seen for very large ice thicknesses and 

for short correlation lengths. The changes in modal group velocities are fairly small when 

compared to the differences due to the different water masses at the source and receiver. 

Figures 5.9 - 5.12 show representative plots of the effect of changing the wave speeds 

and attenuations in the ice. These results are summarized in Table 5.1. 

Parameter Range Aßn (dB/km) Acg (m/s) 

H 2- 6 m. 2e-2 .6 

CL 11-44 m. 2e-2 .5 

as 1.5 - 3 dB/A 5e-3 .05 

dp 0.5 - 1.5 dB/A 5e-5 le-3 

Cp 3000-4000 m/s 2e-4 4e-3 

Cs 1600-1900 m/s 2e-5 4e-4 

Table 5.1: Order-of-Magnitude changes in modal attenuation and group speed over range 

of ice parameter variation; changes in thickness (H), correlation length (CL), 

compressional and shear wave speeds c and attenuations a are considered. 
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Figure 5-7: Effect of changing ice thickness on modal attenuation and group speeds 

0.05 

0.045 

0.04 

0.035 

0.03 

0.025 

0.02 

0.015 

0.01 

0.005 

0 

20 30 
Correlation length, m. 

a. Mode attenuation, dB/km. 
Correlation length, m. 

b. Group Speeds, m/s. 

Figure 5-8: Effect of changing roughness correlation length on modal attenuation and group 
speeds. Goff-Jordan spectrum assumed 
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Figure 5-9: Changes in modal attenuation and group speeds with ice shear velocity. Nom- 
inal shear velocity is 1750m/s; other lines represent variation from nominal case. Solid: 
1600m/s; Dash: 1900m/s; Dotted: 1675m/s; Dot-dash: 1825m/s. 
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Figure 5-10: Changes in modal attenuation and group speeds with ice compressional ve- 
locity. Nominal compressional velocity is 3500m/s; other lines represent variation from 
nominal case. Solid: 3000m/s; Dash: 4000m/s. 
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Figure 5-11: Changes in modal attenuation and group speeds with ice shear attenuation. 
Nominal shear attenuation is 2dB/X; other lines represent variation from nominal case. 
Solid: l.bdB/\; Dash: 3.5dB/\ 
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a. Mode attenuation changes b. Group speed changes 

Figure 5-12: Changes in modal attenuation and group speeds with ice compressional atten- 
uation. Nominal compressional attenuation is ldB/X; other lines represent variation from 
nominal case. Solid: 0.5dB/X; Dash: l.hdB/X 

5.3    Comparison of modeled and received time series 

Coded MLS transmissions from the April '94 TAP experiment have been matched-filtered 

and coherently averaged to provide travel time data. MLS receptions on the Simi vertical 

line array for Julian day 110 are shown below. Mode shapes 2-4 have zero-crossings near 

200 m, in the middle of the plot. Mode 1 is highly attenuated and difficult to identify in 

the data. 

To help in interpretation of the data, time series simulations have been generated using 

KRAKEN, with LePage's SELFCON code used to specify the boundary condition at the 

ice. Historical sound speed profiles from the GDEM atlas were used for the modeling. 

A Gaussian pulse with a bandwidth similar to that of the M-sequence transmissions was 

propagated through the ocean. The ocean was modeled in 34 range segments, chosen to 

capture the largest changes in sound speed and bathymetry along the path. 

Coupled-mode simulations of the TAP experiment are shown in Fig. 5.14. The Gaussian 

pulse used for simulation has much larger dispersion than the actual TAP signal, but the 

results can help identify modal arrivals. Modes > 7 are sharply attenuated due to coupling 

at the Lomonosov ridge. This stripping appears to be consistent with what is seen in the 

data. Mode 1 is seen to be heavily attenuated. The mode 2 - mode 3 delay is larger 

than observed in the data. The higher order modes are fastest, and are seen in both the 

simulation and the data to have overlapping arrivals. 

We can explain differences in the relative modal arrival times by assuming that the 

Atlantic water was warmer and penetrated deeper into the Arctic during the experiment 
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Figure 5-13: Processed time series on vertical array, (processing done by E. Scheer, Woods 
Hole Oceanographic) 
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Figure 5-14: Coupled mode simulated TAP time series for three different depths 
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than is shown in the GDEM data. As mentioned earlier icebreaker observations by Carmack 

et al. indicate that this is the case. 

5.4    Comparison of impedance and boundary operator scat- 

tering theories 

Scattering theories developed by LePage & Schmidt [47] and Kudryashov et al. have been 

used to predict long-range transmission loss in the Arctic. Kudryashov's method is based 

on perturbing an impedance boundary condition at the interface, while LePage & Schmidt's 

method uses the KS boundary operator approach to perturb all boundary conditions at the 

rough interface. Earlier comparisons showed very close agreement between the approaches 

[22]. This apparent agreement was deceptive, both because the MIT group had not included 

the effects of attenuation in the ice and because the models for ice statistics used were quite 

different. When attenuation is included and the same ice model is used, the boundary 

operator approach yields much higher mode attenuations. 

A detailed comparison of the boundary operator and impedance scattering theories is 

given in Appendix C, and the results are summarized here. The reason for the disagree- 

ment between the two theories can be understood by considering scattering from a rough 

fluid-fluid interface. The boundary operator approach ensures that both the mean and 

scattered fields satisfy the two boundary conditions at the rough interface. The impedance 

boundary condition, however, is only a single boundary condition based on the unper- 

turbed reflection coefficient. Kudryashov's method is based on a Taylor expansion of the 

boundary impedance, using the interface roughness as the small parameter. Thus the ex- 

pression for the scattered field derived comes from perturbing a single boundary condition, 

the impedance boundary condition, and cannot satisfy the two boundary conditions at a 

rough fluid-fluid interface. The impedance scattering theory gives exact agreement with the 

KS theory for inherently one-sided boundaries, such as a pressure-release or rigid surfaces, 

and can be expected to give a good approximation for boundaries with high impedance 

contrast. In the other limit, as the impedance contrast goes to zero, the impedance method 

incorrectly predicts that a scattered field will still exist. 

The important question for Arctic modeling is whether the ice plate impedance is high 

enough that the two scattering theories will be in reasonable agreement. Fig. 5.15 shows 

mode attenuation coefficients for scattering from the ice sheet calculated using the two 

methods. The sound speed profile is taken from historical data for the TAP source location 
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Figure 5-15: Mode attenuation caused by scattering from rough ice plate: f = 20 Hz; Goff- 
Jordan power spectrum. Closed triangle is LePage result, including ice attenuation; open 
triangle is Lepage, no attenuation; Closed circle is Kudryashov result, K12 = 0.7; Open 
circle is Kudryashov, K12 = 0 

and typical ice parameters (shown on plot) are used. The top and bottom roughnesses of 

the ice sheet are assumed to be perfectly correlated. We see the impedance method results 

(including ice attenuation) are quite close to the LePage/Schmidt results with attenuation 

in the ice set to zero. Much higher attenuations (and proportionally larger losses for mode 

1) are predicted when attenuation in the ice is included. 

We stress that the mode attenuations presented by Gavrilov, Kudryashov et al. in their 

reports [22, 21] are higher than those shown in Fig. 5.15, and in fact agree well with the 

mode attenuations found using the modified SELFCON (including attenuation in the ice) 

and KRAKEN. The difference in the results comes from the fact that the Russian group 

have assumed a different model for ice roughness. The ice roughness is described using a 

bimodal distribution which is probably more realistic than the Goff-Jordan spectrum used 

in generating Fig. 5.15. Perhaps more importantly, correlation between roughnesses on the 

top and bottom of the ice is taken into account. As mentioned earlier, this correlation is 

difficult to model using the KS scattering theory. Thus the main conclusion of this section is 

that further work remains to be done in understanding scattering from the Arctic ice cover, 

combining the realistic ice model used by Gavrilov and Kudrashov with a more generally 

applicable scattering theory. 
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5.5    Summary 

While earlier chapters concentrated mainly on scattering in shallow water, this chapter ex- 

amined the effect of scattering from the rough ice cover on long-range Arctic propagation. 

The primary modeling tool was the ice plate scattering model of LePage & Schmidt. This 

model was modified slightly and used to carry out a parameter study of the effect of differ- 

ent ice parameters on Arctic propagation. Modal scattering losses and group speeds were 

calculated, and shown to depend most strongly on ice thickness and roughness parameters. 

Simulated time series were generated and compared to results from the April '94 TAP ex- 

periment. Modeling showed that the modal amplitudes could be explained in a satisfactory 

way using the scattering model if shear wave attenuation in the ice was taken into account. 

Comparison of simulations with data showed that Arctic water was warmer than indicated 

in historical databases. More recent oceanographic measurements also show warmer water 

in the Arctic. Simulations using the measured oceanography are expected to show bet- 

ter agreement with the data. This and other modeling work indicates that tomographic 

modeling of Arctic ocean temperature is practical. 
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Chapter 6 

Conclusions and future directions 

In this thesis an attempt has been made to understand and model the extremely complicated 

scattering processes which take place in real ocean waveguides. While the work presented 

here is helpful in understanding some of the physics involved, much fundamental work 

remains to be done. In this final chapter we attempt to draw general conclusions from what 

has been learned, and use the insights gained to suggest directions for continuing research. 

6.1    Summary of results 

First we consider the shallow water reverberation problem. The results of the thesis can be 

summarized under several headings: 

Sensitivity to propagation environment: 

For the low frequency reverberation scenarios considered in this thesis, propagation and 

waveguide effects were seen to be extremely important. For virtually all cases considered, 

the spatial statistics calculated for the reverberant field were dominated by the modal 

interference pattern. Bottom sound speeds and sound speed gradients in the water were 

also shown to have a large impact on bottom scattering levels. Bottom impedance was seen 

to be an important factor for determining whether or not scattering has a large effect on 

total field statistics. 

This sensitivity has several practical implications. First, it shows that modelers need 

to represent the deterministic background properties of the ocean as accurately as possible. 

In the chapters above, results were derived in several cases for very idealized ocean envi- 

ronments - for example, random sediment layers were assumed to be isovelocity, and only 

isovelocity elastic halfspaces were considered. These kinds of idealized results are important 

and useful tools, since they allow us to isolate the different effects in scattering. However, 
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models based on these simplifications may fall short when compared to experimental data. 

For experimentalists, correct interpretation of scattering data may depend on accurate 

measurements of the water and bottom properties. Good measurements of bottom proper- 

ties are of course difficult to make, and are one of the main reasons shallow-water propaga- 

tion is difficult to predict in the first place. Hopefully modelers can make a contribution to 

better experiment design by predicting, given a rough description of the experimental site, 

which environmental parameters are the most important to measure correctly. 

The dominant role played by the waveguide in shaping the scattered field means that 

inversion for scattering mechanisms from low-frequency reverberation data would be ex- 

tremely difficult. The numerical results in Chapter 4 showed few obvious means for telling 

whether reverberation was caused by rough fluid interfaces, rough elastic interfaces, or vol- 

ume inhomogeneities in the bottom. This can be contrasted to Tang's work [75], which 

showed theoretically that correlation lengths of sediment inhomogeneities could be inverted 

from bottom scattering data. In his scenario the receiving array was quite close to the 

bottom, so waveguide effects were not important. 

As a final note, it might be possible for a model which handles the propagation effects 

well to obtain a good match with data even if only a very simplistic scattering model 

is used. For example, Ellis [17] has shown good agreement to data with a normal-mode 

reverberation model. The scattering theory used, Lambert's law, almost certainly does not 

model the physics realistically. 

Sensitivity to roughness and/or volume fluctuation statistics: 

The numerical results in Chapters 3 and 4 showed clearly that the nature of the scattered 

field depends strongly on the statistical distribution of the random scatterers. Both the 

characteristic length scales and the power spectrum descriptions of the scatterers had large 

effects on the directionality of the scattered field. This shows that work such as that done 

by Goff and Jordan [25] in describing bottom roughness and Yamamoto [86] in describing 

volume fluctuations in sediments is critical. Any effort put into better understanding and 

parameterizing the variations of the ocean's properties can be expected to have a large 

payoff in terms of more realistic scattering models. 

Modeling of different scattering mechanisms: 

One of the main thrusts of this thesis has been to include several different scattering mech- 

anisms into the reverberation model. The numerical results supported the idea, introduced 

in Chapter 1, that volume and surface scattering can be considered to be physically sim- 

ilar.   More dramatic differences were seen when bottom elasticity was included, due to 
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the presence of interface waves. In general, however, we reach the somewhat surprising 

conclusion that the actual scattering mechanism is often less important than either the 

roughness/fluctuation statistics or the environment in which the scattering occurs. 

In Chapter 5 modeling results in support of the trans-Arctic propagation experiments 

were detailed. A number of results of that modeling can be briefly stated: 

• Modal attenuations and group speeds are most sensitive to ice thickness and rough- 

ness, rather than other ice parameters. 

• Observed modal amplitudes can be matched reasonably well using the modified LePage- 

Schmidt ice scattering model. 

• Inversion for water temperatures from long-range acoustic transmission data seems to 

be possible. 

• More work is needed in developing ice scattering models. 

6.2    Directions for future modeling efforts 

There are a number of ways in which the models proposed in this thesis can be improved on 

and extended. The most obvious steps would be to relax some of the simplifying assumptions 

made. As one example, the effect of a sound speed gradient in sediment volume scattering 

layers has been neglected. An isogradient layer could be taken into account by representing 

the waves in the layer in terms of Airy functions, rather than plane waves. 

The work presented above models volume scattering in fluid media only, and cannot 

account for the presence of gradients or multiple layers in elastic bottoms. The modal 

reverberation model would be more useful if it could treat more realistic elastic layers 

(including the ice cover in the Arctic), and could describe volume scattering in elastic 

media. These more realistic elastic scattering formulations would need to be based on a 

better understanding of the fluid/elastic reciprocity relationship. 

Probably the most useful extensions to the models proposed above would be to consider 

range-dependence and three-dimensional scattering. Mild range dependence could be han- 

dled using adiabatic modes, using only slight modifications to the present theory. Stronger 

range dependence would be more difficult to treat, as it would require using coupled-mode 

theory. In principle three-dimensional scattering could be treated using the approach de- 

veloped in Chapter 2. The speed advantage of the modal formulation would be especially 

important for 3D calculations. 
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Finally, single-scattering theories are almost certainly inaccurate for extremely long- 

range propagation. Over long ranges the scattered field will have many opportunities to 

re-scatter, redistributing energy among scattered field modes (note that a single-scatter 

theory should be accurate for finding coherent field scattering loss, as in Chapter 5, since 

scattered energy can never re-scatter back into the coherent field). An approach could be 

developed in which the ocean is divided up into segments, each of which is short enough that 

single-scatter reverberation theory should be accurate. The cross-modal coherences could 

then propagated through the different single-scatter segments. Such an approach could be 

used to calculate scattered field statistics for future TAP experiments. 
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Appendix A 

Derivations for rough surface 

scattering theory 

A.l    Wavenumber transform of Helmholtz theorum 

As previously discussed, the scattered field in the water column can be written in terms of 

boundary conditions along the rough surface using the Helmholtz integral theorum. This 

theorum can be transformed into the wavenumber domain as follows. The integral theorum 

along a rough surface (x',z') is given by: 

c      \       \ j'x < i    i\ ^(jr^yx, z \x , z)      os{x,z)      .       i   /    /\i in, i\ s{x,z) = / dx [s{x ,z) ——Gw(x,z \x,z)\ (A.l) 

To simplify the explanation here we consider transforming only the first term: 

/      N       /",'//    ..dGcoix.z \ x',z') .. „. 
s{x, z) = J dx s(x', z')     uK 'dJ ' (A.2) 

Applying the 2-D (x, z) wavenumber transform as defined in Chapter 2 gives: 

~s{q,z) = ^jdxjdx's(x',z')^^''J *''^&* (A.3) 

We can then substitute expressions for s(x', z') and the Green's function: 

s(x',z')    =    J dqi~s{quz')e-i(>x' 

dG(x,z\x',z')    =     r d   dG(g2,z,z')c_iQ?(x_xl) 

dz' J dz' 
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This gives a four-fold integral: 

%>*) = JJII dxdx dqidq2~s(qx, z') dGuj{q
d
2f' Z'] eifo-tt)*Vfr-«>* (A.5) 

The exponential terms are eliminated using the definition of the delta function: 

1    f°° 
%-92) = ^y_    dxeb-ri*, (A.6) 

etc. The final result is 

~s(q,z) = 2irs(q,z')dG{q^Z,) (A.7) 

The other terms are evaluated in the same manner to give the result quoted in Chapter 2. 

It is also easy to find the equivalent result for an (x, y, z) geometry. 

A.2    Spatial domain approach to rough surface scattering 

In this section we briefly show a spatial-domain approach to the scattering problem. This 

work seems to show that representing the roughness in terms of its Fourier transform is 

only valid for a full modal solution when the mode attenuations are zero. 

The spatial domain Helmholtz equation is shown in section 2.3. The KS theory shows 

that the scattered field boundary conditions on the rough surface are given by 

Bs(x',z') = j(x')~ <p(x',z') > -^Lb<p{x'yZ') > (A.8) 

The appropriate boundary operator matrices are used. 

A.2.1    Rough pressure-release surface 

First we consider the simple case of scattering from a pressure-release surface. The KS 

equations then give 

i i   i\ i i\d<p(x',z') > 
s(x,z) = -7(x') ^_      ' 

oz' (A.9) 

Inserting this in the Helmholtz integral equation, we have 
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In the Born approximation the mean field is given by 

d<p(x',z') >   _ iNM^^mjZsf-^P       lkmX. 
dz> p(zs)^ 2km 

lA-ilj 

where NM is the normalization factor to the field at 1 meter, and the Green's function is 

Gw(s,z | x',*')=—£ ^^e-^l^l (A.12) 
p(z') ^ 2qn 

where the absolute value sign ensures that the scattered field travels away from the scattering 

patch. Inserting these expressions into the Helmholtz equation and simplifying gives 

If we make the forward scattering approximation, then x — x' will always be positive, and 

the forward-scattered field is: 

which agrees with the results given in section 2.3. 

A.2.2    Rough rigid surface 

Now we look at scattering from a rigid surface. The Kuperman/ Schmidt equations give 

the boundary condition for the scattered field on the boundary (x',z') as: 

9   , i   A        / A d2        , ,   A dj(x') d< p(x', z')> ,. 1P, 
-s(x',z')=1(x>)^<P(x>,z>) > -  W, \; (A.15) 

Prom the Helmholtz integral, the scattered field in the water is given by 

s(x, z) = |~ ds{^f>]G{x, z | x', z'). (A.16) 

In carrying out this integral we will split up the two terms first and then recombine them 

later. The first term, inserting the expressions for the pressure and Green's function given 

above, is 
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2qn 
e       '        ' (A.17) 

where the (k%(z) - k^) term is the second derivative rewritten using the depth-separated 

wave equation. If we once again make the forward scatter approximation, the first term is 

Tl = rtTYLr) f £^)e-*-(*g(z) - kl)M^^M^Mc-^(.-^A.18) 

Now we look at the second term. With the forward-scattering approximation it becomes 

p(zs)p(z')Jo fan    dx>     m 2km 2qn 
(AJ9j 

Inserting the Fourier transform of the roughness derivative: 

~M    = /_«, KM-iti^tQ (A.20) 

gives for the integral over x': 

rx /-oo 

I\=  I   dx' j     dq^{q){~iq)ei^qn-k^-l>'. (A.21) 
JO J—oo 

The dominant contribution to the integral will come for q = (qn-km); at other wavenumbers 

the contribution will be reduced due to the rapidly oscillating phase (Note that if the integral 

were over all x', it could be written as a delta function in q. The delta function would be 

exactly satisfied only for (qn-km) real, in other words if the mode attenuations are neglected. 

Neglect of the mode attenuations was discussed in section 2.4) The second scattering term 

is then well approximated by 

T2 = ^£/^>--*M,„ - ^,«^2«^Me-,nA.22) 

Adding the terms together and simplifying, the scattered field generated by a rough 

rigid boundary at z' is 

s{x'z) = ^Ef^W^I^/i-u]^ 
JM^W^.«^, (A23) 
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A.2.3    Results for idealized waveguides 

If the waveguide is isovelocity, the mode shapes and eigenvalues can be found analytically. 

The scattering formulas above then take on simple forms. 

For the rough pressure-release bottom, the simplest case is that of the ideal waveguide. 

The water column is assumed isovelcity and is of depth D, bounded by pressure-release 

surface on top and bottom. The mode shapes are given by 

4m{z) = \J^sm(kznz) (A.24) 

where 

km = ^- (A.25) 

The scattered field is then given by 

i      \     o   ArA^V^-c         ;    *. kzm sm [kzmzs) kznsm[kznz)     iqx ,.      . 
s{x,z) = 2irNM2^j{qn-km) -j—^ — e (A.26) 

n,m m n 

For a rough rigid bottom, the simplest waveguide where we can apply the result above 

is an isovelocity ocean with a pressure release top and rough rigid bottom at depth D. The 

mode shapes are then given by 

il>m(z) = Y -p sin {kznz) (A.27) 

where 

Using these values in the equation above gives an expression which is easy to evaluate. 

A.3    Equivalence to boundary operator approach 

In this section we analytically evaluate the normal mode reverberation model derived above 

for the simple example of an ideal waveguide, and show it agrees exactly with the Ku- 

perman/Schmidt result for the same problem. The ideal waveguide is chosen because its 

simplicity makes analytical evaluation possible. The global boundary opertator B(q) is a 

2x2 matrix which can be inverted analytically, while more complicated scenarios must be 
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solved numerically. 

The ideal waveguide consists of an isovelocity fluid layer of depth D bounded above and 

below by pressure release surfaces. An acoustic source of unit amplitude is located at depth 

zs. It is easy to show that the mode shapes for this scenario are given by 

<ßn{z) = \J -jj sin (kxnz) (A.29) 

where the eigenvalues are given by 

nn 
kzn = -jj (A.30) 

We now assume that the upper interface z = 0 is rough. When looking at the special case 

of scattering from rough pressure-release surfaces earlier we found 

%,*) = ^E7(g-U^(^(0)^y^2
(0) (A.31) 

Inserting the forms for the mode shapes, noting that ^(0) = sj^qzu, and carrying out the 

simple contour integral, we find 

*{x, z)=2nJ2 l{qn - km) *** (*™*'>*™ sin ^mz)qm e-iqnX {AM) 
n,m KmU qnD 

Next we use a wavenumber integration for this problem and demonstrate exact agree- 

ment. First we must find the solution for the mean field in the waveguide. The equation to 

be solved is the depth separated wave equation with a unit strength source term, 

g + (A;o(,)2-A;2)x = -fc^ (A.33) 

The solution for x(k) can be written as a sum of the solutions to the homogeneous equation 

and a particular solution [38, Chap. 2] 

Gw{k,z,zs) =gU)(k,z,zs) + Hu{k,z) (A.34) 

The homogeneous equation has two solutions, which can be written as up- and down-going 

plane waves: 

Hu{k, z) = x~e-ik*z + x+eik*z (A.35) 
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The particular solution is simply the free-space Green's function.  It can be shown to be 

[38, Chap. 2] 

guj{k, z, zs 
Aixikr 

(A.36) 

The amplitudes of the up- and down-going plane waves are found by applying the boundary 

conditions of p — 0 at z = 0, D. The boundary conditions can be written in the matrix 

form: 

1 

e-ikzD     e. 

1 

ikz D 4717 A;, 
(A.37) 

where the source terms come from the particular solution, and the plane wave amplitude 

vector is 

m = 

This 2a;2 system is easily solved, giving 

X (A.38) 

X(k,z)    =   x-(k)e-*k*z + x+(k)eik*z 

1 
47T 

sin kz z sin kz(D—zs) 
kz sinkzD ' 

sinkzzs smkz(D—z) 
kzsmkzD '■ 

p   kz\z   zz 

4irikz 

z < zs 

z > zs 

(A.39) 

This expression has simple poles at kzD = mir, corresponding to the modes of the ideal 

waveguide. We note that this is the same eigenvalue condition as was found using the 

normal mode approach. Carrying out the inverse transform shows that the unperturbed 

mean field in the waveguide is given by 

X(x,z) = pY, 
i ^ sin (kzmz) sin (kzmzs)  _ikmX 

k 6 (A.40) 

where km = Jk^ — k%m is the horizontal wavenumber.  This expression is identical to the 

result for the unperturbed field obtained from the normal mode method. 

Now we are ready to evaluate the scattered field in the waveguide using the KS result. 

Under the Born approximation, the mean-field vector < x(fc) > is the same as the unper- 

turbed plane-wave amplitude vector x(&). The global boundary operator B on the left-hand 
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side is the same as that used to calculate the unperturbed field. To evaluate the RHS we 

need use only the local boundary operator for the upper surface, given by 

B(q) = [ 1    1 ] (A.41) 

For the pressure-release surface the rotation operator b = 0. The forcing term can be 

rewritten using contour integration to pull out the modal terms from the integral over k, 

giving 

B(q)s(q) = 
L Lm7W      Km)        kmD 

0 
(A.42) 

This system of equations is solved algebraically for the transformed scattered field, s(q) = 

g-e-iqzz _j_ s+e%q'z, giving 

~ kmD sm(qzD) 

The next step is to transform back to the spatial domain. First we write the roughness 

in the spatial domain: 

7(<7n - km) = -^ I dx'j(x')eito»-kmW (A.44) 

Carrying out the inverse transform, selecting the forward-scattered poles, and expanding 

out sinqzn{D — z), the final result is 

s(x,z) = J2 f dx'j{x')e-ik™x'Sin (**™**)*«™ sin ti™z)qzn e-iqn{x-x') ^^ 
n,m J kmD qnD 

which is the same result as found from the normal mode reverbation method. 

Numerical results from NMSCAT (the normal mode reverberation code developed in 

this thesis) and Schmidt's OASS code are compared in Figs. A-l and A-2 for the ideal 

waveguide case. The waveguide bottom is assumed to be rough, with aim. rms roughness 

and 20 m. correlation length. The statistics are described by a Goff-Jordan spectrum. 

Agreement is seen to be excellent for both geometries at all but the shortest ranges. 
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Ideal   waveg uide. rms= 1 I-50 Goll-J.  (X.Z) SCFLD   NTLRAN 
Freq:       50.0 Hz 
SD:             0.0 m 
RD:           50.0 m 

4i 
hi y¥ 

^w^wvw 

W •; 
,7 

Kl 
t! 
! 

Range  (km) 

Figure A-l: Expected scattered field intensity, fluid bottom case, (x, z) geometry. Solid line 
is OASS result, dashed line is NMSCAT result. Note the overall agreement. 

¥ 

Ideal waveguide  exomple.  rms=1.  1=20 Goff-J.  (R.Z) SCFLD NTLRAN 
Freq:       50.0 Hz 
SD: 0.0 m 
RD: 50.0 m 

::|r liiiiwi» fHUl 

Range  (km) 

Figure A-2: Expected scattered field intensity, fluid bottom case, (r, z) geometry. Solid line 
is OASS result, dashed line is NMSCAT result. 
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A.4 Scattering from rough elastic interface 

Toset up the boundary conditions for scattering from an elastic halfspace we first need the 

equations of motion for the elastic medium. Newton's law can be written as [14, p. 158] 

3           J 

(A.46) 

where Oij is the stress tensor, / is the body force, and ü is the displacement vector. The 

strain e is related to the displacement by 

1 . dui      duj 
(A.47) 

where ü = (u,v,w) is the displacement vector,  and finally the elastic Hooke's law for an 

isotrop ic homogeneous elastic medium is: 

k 
(A.48) 

These three equations can be combined into a set of three coupled equations. To decouple 

the equations, we express the displacement using the Helmholtz decomposition: 

u = V4> + Vxtp. (A.49) 

When considering the 2D case we make two further simplifying assumptions; first all 

strain is in-plane: 

| = °' (A-5°) 
and second that there is no out-of-plane motion: 

v = 0. (A.51) 

Then the displacements in the solid are given by 

_    dcj)     dtp 
dx dz 

v   =   0 
86 dib 

W    =    Tz + dx- (A-52) 
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Under plane strain and using the Helmholtz decomposition, the equations of motion decou- 

ple into two equations, one for the compressional potential: 

(V2 + k2
p)4> = 0, (A.53) 

where kv = f- and c2 =   ~}~ ^, and the other for the shear potential 

(V2 + k2
s)i> = 0 (A.54) 

where ks = — and c2 = ■tL. 

As there is no source in the elastic halfspace, there are only down-going waves. If the 

fluid-elastic interface is at Zi, the compressional potential is 

4>{x,z)= fdk4>{k,z)e-ikx (A.55) 

where 

j>(k,z) = Ce-"/p{z-Zi) (A.56) 

and 7p = Jk2 — k2. Likewise the shear wave potential is given by 

i>{x,z)= f dki>(k,z)e-ikx (A.57) 

where 

V>(M) = De-i't*-«) (A.58) 

and 7s = \Jk2 — k2. 

At the fluid-elastic interface three boundary conditions must be satisfied. First is the 

continuity of normal stress. Since pressure is just the negative of normal stress, we have 

<?zz = -P, (A.59) 

where p is the pressure in the water column.   The second condition is continuity of dis- 

placement. We can relate pressure and displacement through Newton's law, F = ma. Ifthe 
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motion is harmonic, the boundary condition becomes 

1 dp 
UJ w = 

Po dz 
(A.60) 

The third boundary condition is that the tangential shear axz be zero at the interface. 

To set up these boundary conditions we must write the stresses and displacements in the 

elastic bottom in terms of the velocity potentials. Prom Hooke's law and the stress-strain 

relation azz and axz are found: 

„  ,d26      d2V> x o 

(A.61) 

In terms of the compressional and shear velocity potentials defined in section 2.3.3, these 

quantities are 

azz    =   fi[(2k2-k2
s)Ce-i»z + 2ikjsDe-^z] 

axz    =   ii[2iklpCe-ii>z-{2k2-k2
s)De-^z] (A.62) 

In addition, for the rotation term in the scattering expression we will need the quantity 

.   ,d2<f>     d2<j)     n 82rp . 

=    -2/x[(2fc2 - k2
p)Ce-^z + 2iklsDe-i*z] (A.63) 

the boundary conditions collected together in matrix form are 

where 

B 

P 

C 

D 

= 0 

B = 

li{2k2 - k2)   fi2ikjs 

ikco2 

0 n2ik-yp -n(2k2 - k2) 

(A.64) 

(A.65) 

The pressure field can be written in terms of normal modes, as indicated in section 2.3.3. 
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The plane wave coefficients Cm and Dm corresponding to mode m can then be found alge- 

braically. Since calculating ipn introduces some numerical error, we solve for the unknowns 

using the first and third equations, giving 

a 2km     ks 

/4Ä - k2
s)

2 - 4/47pm7s 

T-)        _ ^fcrnYpm 
Um,      —      " (A.66) 

ß[{2km - k2)2 - Akmlprnls 

where ipm{zi) is the value of mode m evaluated at the fluid-elastic interface. 

Now we begin the scattered field calculation.   The boundary operator B was defined 

above. Prom it we calculate 

dB{k) 

dz 

d_ 
dz -/j,jp(2k2 - k2)    -jj,2ikj. 

p\ 

0 

2   2 
-<*' Ip 

-2ik/j,i2 

—iku)2js 

Ws{2k2-k2) 

(A.67) 

By expanding the boundary conditions one can calculate the rotation operator b: 

b(k) = 

0     /j,4ik~/p 

g    -iku2 lsio 

0      -2ß{2k2 - kl)    -fyihy. 

2ß{2k2 - kj) 

2 (A.68) 

These quantities are used in the KS equation to find the scattered field. The incident (mean) 

field is written as a sum over modes m, where the mode shape ipm is found in terms of the 

plane wave amplitudes in the halfspace. Simplifying gives 

B{q)s(q)    = 
-NM 

(2TT)
2
P(ZS) 

-NM 

(2n)2p(zs) 

roo 

/    dkj^liq-k) 

/•oo 

/   dk^iq-k) 

i/>m(zs)   dB{k) 

tf-k2} dz i(q-k)b(k)] 

tpm(zi) 

Cm 

am\q,k) 

a{m'(q,k) 

a>m(q,k) 

(A.69) 

where Cm and Dm are the scattered field plane wave amplitudes in the bottom. 

The scattered field equation equation consists of three coupled equations.  After some 
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tedious algebra, these equations can be manipulated into an impedance form, given by 

%, Zi) - Zo(q)dH^=Gs(q). (A.70) 

Here s(q,Zi) is the scattered field at the rough z;, the boundary impedance Z is given by 

Zl(^^M±Mw, (A.71) 

and the forcing term for the scattered field is 

where 

A^(g,A)    =   -/>!<$> (<?,*) (A.73) 

The wavenumber-domain solution for this equation is given by Eq. 2.64. When trans- 

formed back to the spatial domain, the residues for the forward-scattering poles q = qn 

are 

Res(q - qn)    = 
Kernal(q) \qn 

dir  I 
dq   I1n 

_ Kernal(qn)Z0(qn) 

~    Qn       *M) (A-74) 

The results can be further simpified by rewriting the impedance in terms of mode shapes: 

Zo(qn) = *- = *M, (A.75) 
Pz         1pn{z) V           } 

giving the result shown in Eq.    2.66.   Similar calculations are carried out for the back- 

scattered field. 
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A.5    Power spectral density 

In section 2.3.2 an expression for the scattered field in the wavenumber domain was found: 

~s{q>z) = fif dk^iq-Wniz)        °™(J'*> (A.76) 

where 

,    M_    -NM 
anm{q,K) —     ,  A   ,    T 

ft?' 
(A.77) 

If only a single plane wave is incident on the rough surface with some wavenumber kinc, the 

scattered field is given by 

S~(<^ = 7^2 £ 7(9 - ^c)^(.),,2
a"m,(2

9;fm
2
c)    2, (A.78) 

The second moment of this quantity is the power spectral density of the scattered field. 

Kuperman & Schmidt [45] have shown the second-moment of the transformed roughness 

can be written in terms of the power spectrum: 

< 7(9 - k)l*(q ~ k') >= 2TT < 7
2 > P{q - k)8(k - k'). (A.79) 

The power spectral density can then be written as 

PSD(q)plane = -1- £ P(q - kinc) | i,n(z)        ^°,k**) |2 (A 80) 
(2vr)   w (kinc-k?a){q2-ql) 

In general the incident field will consist of many modes, rather than a simple plane wave. 

The contour integral over k is then carried out, enclosing the positive km poles which are 

propagating away from the source. The transformed scattered field is then given by 

%>*) = ^S7(g-^M*C7(;'H- (A.81) 2*£m 2km{q2-ql) 

Following the same steps as before, the total power spectral density is given by 

PSD{q) = ^IlP(q- km) | ^W^'H I2 (A.82) 
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A.6    Backscattered intensity vs. time 

In section 2.5, the backscattered signal from a narrowband pulse was found as a function 

of time. The derivations for finding backscattered intensity are shown in this appendix. 

First, the backscattered intensity vs. for a plane geometry is found. The transformation 

of variables shown in Appendix A.7 is then used to find the result for the cylindrically 

symmetric ocean. 

In section 2.3 the backscattered intensity, for a plane geometry, is shown to be 

/oo   . 

7(x')e-(°»+°»OI*V(-*»-*™>s'| 4,n(z)bnm (A.83) 
... ...       -oo J n,m 

The modal group velocities can be used to relate the travel time to the insonified area. For 

the m ->■ n scattering path, the center of the insonified region at some time t is 

xnm(t) = (i-T/2)-^L_. (A.84) 
^77,     I    Cm 

The insonfied region is given by [x1(t),x2(t)} = [xnm - Axnm,xnm + Axnm], where 

^•£77.777. — 

T     CnCm 

^ £77,   1   Cm 
(A.85) 

At some time t, all backscattering will come from the insonified region [xi(t),x2{t)]. The 

backscattered energy from the right-going wave is 

rX2(t) r 
*b(z,t) = E /        [7(x')e-^+^)\x'\ei{^n--km)xn Mz)Km (A g6) 

n,mJxiit) J 

The backscattered intensity is then found from a second-moment expectation of this 

equation: 

,x> .x" 
h{z,t) >    =   2 53 J] /  2 dx' / 2 dx" < 7(s'hV) > 

e-(an+am)x'e-(ai+ap)x"   i(-qn-qm)x'   -i(-q,-qp)x" 

(i>n(z)bnm)(i/)i(z)bipy (A.87) 

where the integration limits depend on mode numbers and time, as discussed above.  The 

factor of 2 accounts for the fact that scattering is recieved from both the right and left sides 
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of the source. 

Next we switch to sum and difference coordinates, defined by: 

y   =   x' — x" 
x' + x" 

r    = 

The expected intensity is then 

ry+ 

n,m,l,p 

(A.88) 

,ei(-1n-qm-qi-qP)y/2 

On.mMh 

<h(t,z)> =   Y, f_ dyN^( 

n,m,l,p   y 

[r+ dre^-^-^^i^p^M^t(z) °nm\ (A-89) Ji— r    y/z 

The limits on y are y± = yd ± Ar, where 

Vd = np(t) - rnm(t) (A.90) 

is the distance between the centers of the insonified regions and 

Ar = Arip + Arnm (A.91) 

is their combined width. Similarly the limits on r are r± = rc± Ar/2, where 

rc = {rnm + rip)/2 (A.92) 

At this point we can argue, as many authors do, that we keep only the coherent terms, i.e. 

n = I and m = p. The off-diagonal elements can be expected to give a smaller contribution 

because of phase oscillations in the integrals. Also, the nm and Ip insonification regions 

move at different speeds, so at longer times the correlation N(y) decreases. Ellis [17] has 

demonstrated that this assumption gives a smoothed answer which captures the overall 

energy levels of the full answer. 

If the annulus width is not too large, the cylindrical spreading term is well approximated 

as: 

1 l (A.93) 
r-y/2      rnm{t) 
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so the intensity becomes 

r2Axn 
\e

i(-Qn-qm)y <h{t,z)>    «    2Y,   _ dyN(y)e 
n,m    —ZAxnm 

Jr~ rnm[t) 

where 

r* = rnm{t) ± 2Arnm. (A.95) 

The first integral can be written as a convolution of the power spectrum with a window 

accounting for the finite pulse length: 

Numerical tests show this factor has an effect only for extremely short pulse durations 

(which violate the narrowband assumption) or extremely long correlation lengths, so the 

convolution is dropped in the following. 

The integral over r, assuming the attenuation over the insonification area is small, is 

h = 2Arnme-2(Q"+Q™)r™W (A.97) 

so the expected intensity is given by: 

T .       . „       ,__ p-2(tt„+am)r„m(«) 
<Ib(t,z)>    =   Sir<^>'£fP(-qn-km)Arnm- 

n,m rnm\t) 
|2 I tpn(z)bnm \2 (A.98) 

In comparing numerical results it is convenient to normalize the energy in the pulse. If 

the pulse is uniform and of duration r, then it follows that the amplitude is set to 1/r. 

Multiplying by this amplitude gives the normalized intensity: 

<h{t,z)>    =   Bn<yi>'£P(-9n-km)(-^-)- _  
n,m 
|2 I i>n(z)bnm |   . (A.99) 

To find intensity for a cylindrically symmetric ocean, the spreading correction factor of 
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2/irr is applied, as discussed below. 

A.7    Cylindrically symmetric geometry 

The Helmholtz equation in a cylindrical geometry is given by 

1 8  ( 8$\      d2§     l2. ^     n /4 

-r8-r{rfr)+^ + k^ = °- (A-10°) 

Using a change of variables defined as 

/7rr 
^(^) = ^/Y$(v) (A.lOl) 

the Helmholtz equation becomes 

-9^ + ^+0^ + ko (*)4> = 0. (A.102) 

The 1/Y2 term decays very quickly away from the source, so we can neglect it. This will 

limit the accuracy of our answer somewhat. However, near the source the modal answer 

is approximate in any case since very high-angle continuous spectrum energy is neglected. 

If the second term is neglected, the Helmholtz equation has the same form as in the (x,z) 

geometry. Thus the effects of the cylindrical 2D ocean can be taken into account by multi- 

plying the Cartesian result by a factor of \j2j-Kr. 
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Appendix B 

Derivations for volume scattering 

theory 

B.l    Perturbation theory for eigenvalue correction 

Consider the form of the eigenvalue problem above: 

d2 

te + ko(zMn = kfyn- <o2> f(kno,z)^n (B.l) 

Since this is the equation for the mean field, all quantities above are averaged, though this 

is not shown explicitly. The equation can be rewritten in the form 

Hipn = Enipn- <a2> /(£,„, z)V>n (B.2) 

Expanding the perturbed quantities to second order: 

En   =   £&°) + oElp + O
2
EM + ■ • • (B.3) 

Since we are interested in calculating the mean field we average the equations above. Since 

a is zero-mean we get the equations: 

<</>„> = vi0)+<a2></42) + --- 
<En>   =   E^+<O

2
>EW + --- (B.4) 
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where all quantities are averaged even if not explicity written so. Substituting these above 

and equating terms of like order gives the following equations. 

0(1) : (B.5) 

This is just the unperturbed equation. The 0(a) terms are zero, by inspection. Finally, 

0(a2) : (B.6) 

The first two terms are eliminated using the first-order solution. Operating on the remaining 

terms with 

P(*) 

and using the normalization condition gives the result: 

/£)<•>* (BJ) 

E® =<a2>  f y^lßtssAdz (B.8) 

We relate this to the eigenvalue perturbation Akn by noting that 

k2
n   =    (kn0 + Akn)2 

=   k2
n0 + 2Aknkn0 + O(ai) + --- (B.9) 

Then the final expression, quoted in section 3.3.1, is 

Ak     =    —E® 
Akn0 

<a2>   [D f(kno,z)tä(z) rm^m^idz (B.10) 
Jo p[z) 2kn0    Jo p{z) 

B.2    Model of inhomogeneities in sediment bottoms 

The discussion in the chapter developed a statistical model in terms of porosity fluctuations. 

In practice it is easier to specify the strength of the fluctuations in terms of the normalized 

sound speed fluctuations. The density fluctuations are then found from Hines' coefficients. 
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The sound speed fluctuations are given by 

<5c=f!<5P (B.ll) 
oP 

so it is easy to see that the normalized RMS sound speed fluctuation can be written as 

21        = ^6PRMS (B.12) 
CO RMS        c0 

In Chapter 3 the mean-squared porosity fluctuation was written as < ß2 >.   Prom the 

equation above, 

</i2 >=(-£-        )2 (B.13) 
§p CO RMS 

This conversion is used to compare with Tang's results. 

B.3    Scattering Integrals and Mean field equation 

In this appendix the details of several calculations refered to above are shown. Before 

beginning we state several facts which will be of use. From the definition of the wavenumber 

transform we have 

SP(r,z) = ^- d2k6P(k,z)e-ik-r (B.14) 
Z7T J-oo 

1    r°°     —       -+ 
< p(f, z)>=^        d2k < p{k, z) > e-ik'r (B.15) 

2.-K J-oo 

1       roo        _      _, 
s{r,z) = —        d2ks(k,z)e-lkr (B.16) 

27T J-oo 

Horizontal derivatives can be written easily; for example 

d6P£z) = J_ f°° d2k(-ik)SP(k,z)e-ikf (B.17) 
OT Z7T J-oo 

We use also the following property of the delta function: 

^ /      d2reik-f = 8(k) (B.18) 
7rr J-oo (2ny 
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First we evaluate the wavenumber transform of the scattered field equation.   From the 

results in section 3.1, the transformed scattered field is given by 

[J^ + k2(z) - q2}~s(q, Z)    =    i^lj 6P(r, z) < p(f, z) > e^Sr 

+    ^ / V6P(r, z) ■ V < p{f, z) > eiq~fd2r       (B.19) 
Z7T J 

The work to be done is in evaluating the RHS. We begin by looking at the simpler first 

term, which involves only p,c. Inserting the appropriate definitions from above gives 

RHS1 = g^- fff d% d% d2r6P{k1, z) < p(fc2, z) > jti-fa+**)F (B.20) 

Using the delta function property, we integrate over f: 

RHS1 = ~ I ld%d% 6P{kuz) < p(k2,z) > 6[q- (kx + k2)] (B.21) 

The delta function pulls out k\ — q — k2. Renaming k2 = k' we have 

RHS1 = ^- I d2k'SP{q-k',z) <p(k',z) > (B.22) 

We next examine the second term, which involves spatial derivatives of p{r,z). We expand 

the derivative terms in the kernel as: 

WP(r» ■ V <?(?,*) >= BiP£z) B<»tZ) > + B57'Z) 8<Pl:-Z) >     (B.23) or or oz oz 

Rewriting in terms of the transformed variables and integrating over f and k\ as above, we 

can find 

RHS2    =    ^ f d2k'[-{q-k')-k'6P{q-k',z) <p(k',z)> 

+ «frf-fl*«/.»)^ (B.24) 
oz dz 

Adding these results together gives the combined RHS for the scattered field equation: 

RHS   =    — I d2k([ßc(z)-fip(q-k)-k]6P(q-k,z) <p{k,z)> 

+    <|>Wi)<XMx)>) (B25) 
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The second result we show is the transformation of the mean field equation, Eq. 3.9. 

Again we break the equation into two terms, and look at the simpler one multiplying pc 

first. This term is 

/I = _^1 f°° < SP(r, z)s(r, z) > eilfd2r (B.26) 

The calculation begins as above, by substituting in the expressions for s(f, z) and SP(f, z). 

II = -T^JI Jd2rd%d2q< 6~P{kl,z)~s{q,z) > e^-^+^dr (B.27) 

Integrating over f again gives a delta function S[k - (kr + q)]; this is used to eliminate the 

integral over ki using ki = k - q. This gives the result 

71 = ~^rjd?< 5~P$-q,z)~s{q,z) > (B.28) 

Next we look at the remaining terms, given by 

/2    =    -££ [d2r < dSP^z>> . ds^z) > eik-f 
2n J df dr 

lip   f ,2.     d5P(r,z)    ds(f,z)       fa 
~    ^Jdr<dz^--\zU>e (R2Q) 

Carrying out substitutions and integrations exactly as done above gives the result 

12    =    ~2^ld2q'H*-^-Q<SP(k-q,z)s(q,z)> 

+ <^-^<P(^»>| (B30) 

These two terms are added to give the intermediate result shown in Eq.   3.14. 

We proceed by evaluating the expectation terms above. This calculation is straightfor- 

ward but long, so we will not show all details here. We first look at the first expectation in 

Eq.   B.28: 

Ei =< S~P(k - q, z)s(q, z) > (B.31) 

Substituting in the expression for s(q, z) from Eq.   3.12 we can write 

Ei    =    ~ I  I dz0dk'Gu(q,z,z0)[vc(zo) ~ ßp{q-k'■£'}■ 
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< 8P(k- q,z)5~P(q- k',z0) ><p(k\z0) > 

Vp dzodk'G^i^z^o) < 6~P(k-q,z)  > ■ 

d<p(k',z0) > 
dzo 

(B.32) 

Using the definition of the power spectrum, we can write 

<6P(k-q,z)ÖP(q-k',z0) >    =   2TT < a2 > PH(q- k)5(k - k')M(z - z0) 

<ÖP(k-q,z)d5P^~k''Zo) >    =   27T<a2>PH(q-k)6(k-k')- 
dz0 

dM{z - z0) 

dz0 
(B.33) 

Our assumption that the vertical correlation length ZQL >> A lets us approximate M 

with a delta function; i.e. 

M(z - z0) = ZCLÖ{Z - Zo) (B.34) 

where ZCL, the vertical correlation length, is the small range over which M is nonzero. The 

first integral above is then trivial, and gives 

En = -2TT < a2 > zCLPH{q- k)Gw(q,z,z0){Hc(z) - ^p{q- k) ■ k < p(k,z) >    (B.35) 

The second integral, rewritten 

Eii = -2TT < a2 > PH(q- k) J dz0Gw(q,z,z0) 
dM(z - z0) d< p(k, zo) > 

dz0 dzo 
(B.36) 

can be found using integration by parts, following Chernov [11].  Dropping the constants 

for a moment, we have 

-£■12   ~   —Gu—^ M |0° 
dz0 

+    / dz0 M(z - z0) 
n  ,_          d2<p{k,z0)>     dGu(q,z,z0)d<p{k,z0)> 
Gcj{q,z,z0) ^—5 h 

dzo2 dzo dzo 

ZCL 
n  ..,        d2<p{k,z0)>        dGw(q,z,z0)      dp(k,z0) ^u;{q,z,z) —5 \z +- 

dzo2 dzo dzo 
(B.37) 

The first term drops out as M -> 0 for large (Z — ZQ). We can simplify the second derivative 
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using the Helmholtz equation: 

d2<p(k,z0) > 2 

Q^2 = -[M*)-*]<P(Mo)> (B.38) 

Putting all this together, we obtain for the first expectation 

Ei    =    -2TTzCLPH(q-k){a2Gw(q,z,z) <p(k,z0)> 

_    „  dGu(q,z,z0)      d<p(k,z0) >     } 
"'        di0 

lz  0z-0 I'] (B.39) 

where a2 is as defined in section 3.1. 

The calculation for the second expection, 

E-~< 3z 8^> (B.40) 

is similar but much more complicated, so we only indicate the steps involved. Substituting 

in the scattered field expression again gives two expectations, 

< 
d6P(k~q),z - - a,,, , 
 '       Hh   SP(q-k\zn)>    =    2ir<cT*->Prr(n-£>\Z(t_C'\dM (*-**) dz        -8P(g-k',zQ)>    =   2Tr<a2>PH{q-k')6{k-k')- 

< dSP(k-^^dSP(q-k\Z()) 
dz 

dz dz~0 
>    =    ^<^>PH(q-k')5{k-k') 

d2M{z - z0) 
dz~2  (B-41) 

Using a change of variables argument [11], it is easy to show that ^f = -§M giving two 

integrals which involve derivatives with respect to *„. We again use integration by parts, 

using the ^sumption that ™<^ -+ 0 as z - z0 becomes large to simplify the integral 

involving 0. Using the Helmholtz equation to eliminate second- and third-derivatives as 

appropriate, we get the final result 

* - -ww?- *"> f,^f-> ?<*&>>+0S^-1 u< a „ > 

where al - a4 are defined in section 3.1 Ex and E2 are then combined to give the self- 

consistent equation for the mean field quoted in Equation 3.18. 
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B.4    Scattered field cross-spectral density 

The cross-spectral density is 

< s{   q\    ,z1)s*{q2,z2) >=  /  /  /  / dz^dkidz''dk^G^qi,zi, z0)G*UJ{q2,z2,z') ■ 

[bi(qi,ki)6~P{qi -kuz0) <p(kuz0) > 

dS~P(qi-k1,z0)d<p(ki,zo)> t\xh(-      t     >\ ^ ~it     >\ ^ 
+    Up a ö }[h{q2,k2)oP{q2 - k2, z ) <p{k2,z) > 

OZo OZQ 

d6P(q2-k2,z')d<p(k2,z>)> 
+    ßp Tz' dz~> ] (B-43) 

We proceed by looking at the cross terms:   from the definition of the 2-D porosity 

fluctuation spectrum, 

< SP{q,z)6P(k,z') >= 2ir<o2> PH{q)6(q- k)M(z - z') (B.44) 

we find 

Tx    =    2n<a2>PH(q1-k1)S(ql-k1-q2 + k2)b1(q1,k1)bl(q2,k2)M(z0-z')- 

<p(k1,z0)><p*{k2,z')> (B.45) 

The z derivatives of ÖP are handled by noting that they will only affect the vertical corre- 

lation function M(z — z'). The other three cross terms are then given by 

T2    =    2?r < a2 > PH{q\ - £i)<H<7i -k\-q2 + k2)ßpbi(qx, kx) ■ 
dM(zp-z') t d<p*(k2,z')> 
 ö~i < P(kuzo) > ^  (B.46) 

T3    =    2TT < a2 > PH{qi - h)S(qi -kx-q2 + k2)ßpbl{q2, k2) ■ 

dM(zQ - z') d< p{ki,z0) > 
dz0 dz0 

<p*(k2,z')> (B.47) 

and 

T4    =    2TT < a2 > PH{qx - kx)5{qi -kx-q2 + k2)fJ,2p 

d2M{z0 - z') 8< p(kuzo) > d< p*(k2,z') > 
dzodz' dzo dz' 
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so the expectation can be written as 

< «(?i,2i)    s*{i2,z2) >= 2TT < a2 >  I Idkidk2PH{q\ - Jfci) ■ 

J j dz0dz' [bi{quki)b\{q2,k2)M{zü - z') <p(k1,z0) ><p*{k2,z') >] 

+ 

+ 

+ 

, ,_  t.dM{z0-z') - d<p*(k2,z')> 
dz' a«' 

ßPb1(q2,k2) — '-  <P*(k2,z') > 
dzi dzn 

H 
2M(z0-z')2d<p(kuz0)>d<p*(k2,z') > 
P i H       ZQZ' dzn dz' 

GUqi,zuzo)G*Jq2,z2,z') (B.49) 

Next the double integral over depth is considered, separate from the wavenumber inte- 

gration. The integral of the first term is simply 

7l   =   J J dz'dz°M(zo ~ z,)bi(quki,zo)blfä,k2,z') <p(kuzo) ><p*(k2,z') > 

GUqi,zi,z0)G*Jq2,z2,z') (B.50) 

In integrating the second term we encounter the derivative dM^°,~z'^. This term is evaluated 

using integration by parts. We assume the vertical correlation length is limited, so the first 

term resulting from integration by parts, proportional to M, will vanish at the endpoints 

of the integral, i.e. where (z - z0) is large. The result is 

12   =   **" I J dz°dz'M(zo -*')M9i>£i,*o)Gw(gi,zi,z0) <P(h,z0) > 

[{kl{z') -k2
2) <p(k2,z') > Gw{q2,z2,z')- 

d<p(k2,z')>dGw(q2,z2,z') 
dz' dz' (B.51) 

where the Helmholtz equation was used to simplify a second derivative. The third and 

fourth terms are integrated similarly, though the fourth term involves two integration by 

parts and requires assuming that ^ -)■ 0 for large z0 - z, as was done in finding the mean 

field equation. The results are 

73    =    VP J f dz'dz0M(z0 ~ z')bl{q2,k2,z')G*Jq2,z2,z') <p*(k2,z') > ■ 

[(k2(zo) - k\) <p{kuz0) > GUQUZUZO) 
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d<p(k1,z0) >dGUJ{q2,z2,z0) 
dz0 dzQ 

(B.52) 

and 

h    = A»5 / / dz'dz0M{zo - «') • 

d<p(fci,z0) >gGg;(gi,zi,zo) 

dz0 dz0 

d<p{k2,z') >dGw{q2,z2,z') 

- {ko{z0) -fci)Gw(gi,2i,2;o) <p(fci,^o) > 

dz' dz' 

-    (k2
0(z') - ^G^,^,*') <p(k2,z') > (B.53) 

These terms are clearly symmetric, and the symmetry can be used to simplify the 

expressions. Defining the terms 

A^(k,z) -/v d<p{k,z) > 

~dz 
A(2)(9,M)    =    W{z) + ßp{kl{z) -q-k)] <p(k,z) > (B.54) 

then the cross-spectral power density is given by 

< s(q±,zi)s*(q2,z2) >    =    2TT < a2 > dz0dz''dkidk2PH{qi - km) ■ 

M(z0 - z')S(qi -h-q2+ k2) ■ 

A(1)(£i,*o) dz0 
+ &(2Hkuqi,zo)Gul{qi,zi,zQ) 

+ 

A(i)(Ä   ^dGJ^z^X 
dz1 

A^(k2,q2,z')GUq2,z2,z')] (B.55) 

B.5    Reverberant field statistics in a 2D ocean 

Here the steps involved in calculating the second-moment statistics of the reverberant field 

for volume scattering in a 2D ocean are outlined. Most of the algebra is similar to that 

shown in other parts of the thesis, so only the main steps are outlined. 

We have seen above that the wavenumber-domain results take a similar form whether 

the 2D or 3D wavenumber transform is used. By analogy with the results in the section 

above, a 2D cross-spectral density can be written down. First, however, we note that a 

different expression for the second-moment of the porosity fluctuations is needed. The goal 
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of section B.4 was to find the cross-spectral density - a wavenumber domain result.  The 

porosity statistics were therefore written in the wavenumber domain.  The 2D equivalent 

would be 

< SP(q,z)6~P*(k,z0) >= 2TT < a2 > PH{q)S(q - k)M{z - z0) (B.56) 

In this section we are interested in finding spatial statistics in the ocean. We therefore write 

the porosity statistics in the spatial domain, as was done in section 2.3.1 when studying 

rough surface scattering. The second moment is found from the Fourier transforms: 

< 6P(q,z)6P*(k,z0) >= j±^Jdr'Jdr" < 6P(r',z1)8P(r",z2) > e^'e~ikr"   (B.57) 

Using the 2D version of the results from section B.4, and replacing the wavenumber- 

domain expression of the porosity fluctuation statistics with the spatial-domain expression, 
we find: 

<s(«7i,*i)s*(<fe,22)>    =    -_ J" dz0 p dz' f Jdkxdk2 ■ 

ydr'jdr" < 8P(r',Zl)6P{r",z2) > e^1'^'e'^-^y] 

A(1)(,i)^(^1,,o)+A(2)(g^i)^(gi^i)Zo) 

(B.58) 

The next step is to convert the integrals to modal sums and carry out contour integrals over 

A* and k2, picking the positive poles which travel out from the source. The cross-spectral 

density is then given by 

n,m,l,p r   v  u/ 

IJdr' fdr" < 6P(r',zi)6P(r",Z2) > j^-We^'W 

i>n(zi) 

Mz2) 

Um{ql-ql) 

A(l) dip,(z')        A (2),     w  /   n 
A

P ~diT^ + AP \q2m\z) 
2&P(g2

2 - qf) 
(B.59) 
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where m and p are sums over the incident fields k\ and k2, and 

&mH<ll)     =     1pm(zs)lpm{z0)   Hc{zo) + ßp(kb ~ qikm) (B.60) 

with Ap  , Ap   having the same form. 

In Chapter 2 we saw that most of the scattered field statistics can be found from the 

cross-modal amplitude expectations, so we calculate those here. To begin, we note the 

spatial correlation of the scattered field is defined as 

< s(xl,z1)s*(x2,z2) >= j jdqxdq2 < s(q1,z1)s*(q2,z2) > e'^e^ (B.61) 

First we find the statistics of the forward-scattered field. All forward scattering received 

at some point x\ will come from ranges r' between [0, rci], and the forward scattered field 

received at at x2 comes from ranges r" between [0,0:2], limiting the range of the spatial 

integrals. As in section 2.4 we define sum and difference coordinates: 

y   =   r' — r" 

r   =    (r' + r")/2. (B.62) 

In the new coordinate system, the terms in the curly braces above can be simplified. They 

become, using Eqn.   3.15 

Braces   =   2TT < a2 > PH((gl ~ h) + (g2 ~ h) )M(z - z0) 
Li 

f     2     drei[(9i-*0-(«-*2)*]r 
Jo 

=    2,<^>PH(^-h)+
2^-k2))M(z-z0) 

(B.63) 
i[(qi - h) - (Q2 ~ h)*} 

If the vertical correlation function M is approximated by a delta function, only one depth 

integral remains in Eq. B.61. Next we carry out the contour integrals over q\ and q2, 

choosing the positive (forward-scattered) poles.  Combining all these results, the forward- 
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scattered field correlation is found to be 

<s(xuz1)s*(x2,z2)>    =    <£->   £   pdzoP^-^ + b'-V) 
n,m,l,p   Zl 

g-lVfl      »L,      V«      •"*)   j        2 

*[(<7i-*i)-(g2-*2)*] 

^(z1)Vr(z2)onm(^o)a/p(^o)e-l("':Clei'?'X2 (B.64) 

where 

n       l~ ^ - * /Am(fcm)^n(^o) + AL)(gn,fcm)V'„ Zp)^ 
Onml^oj — —; r—; r       —  (B.65) 

p{zs)p{zQ) \ Akmqn J 

and aip is similar. 

This procedure is similar to that used in section 2.4, and the results are similar to those 

for rough surface scattering, with the addition of a depth integral. The same procedure can 

be used to find the spatial covariance of the backscattered field. If both receivers are at the 

source range, the result is: 

<5(o,,1K(o,,2)>  =  ^ £ fdzoPH^-^ + t-v-V) 
r2 

n,m,l,p   Zl 

\ i[(-Qn - km) + (-qi - kp)*] J 

1>n(zi)ll>i(Z2)bnm(zo)bip(zo) (B.66) 

where 

„nmM =       »^ f^'(W¥w(») + ^(-fc. *»)*.<») \ (B67) 
p{zs)p(z0) \ -<±kmqn J ' 

Now the modal cross-coherences can be defined. Writing the pressure field as 

s(x, z) = J2 an%l}n{z)e-iq"x (B.68) 
n 

helps to identify the cross-modal expectations: 

m,p 
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A(Qi-ki)-(g2-k2)']^^ 2 

anm{zo)aUz0) (B.69) 

A similar result for the backscattered mode amplitudes can be written: 

< a2 > ^  F* ,    _   , {-qn ~ km) + (-qi - kp) 
<M0)6*(0)>   =       9^    2^ /    dz°p^( Ö )" 

bnm(zo)tfp(z0) (B.70) 
1 

1 i[(-Qn - km) + (-qi - kp) 

These expressions are used to generate the numerical results shown in Chapter 4 
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Appendix C 

Examination of impedance 

scattering theory 

This appendix compares two approaches to studying scattering from rough surfaces. The 

aim is to calculate attenuation of the coherent sound field and statistics of the scattered 

field. 

We first examine the simple case of scattering from a fluid-fluid boundary. Previous 

work by Kryazhev and Kudryashov [40] and Kudryashov [42] (refered to as Kl and K2 

from now on) is rewritten slightly and compared to results from the two-sided scattering 

theory developed by Kuperman [43] and Kuperman and Schmidt [45]. The comparison 

shows that the two approaches agree in two limiting cases; first, as the correlation length 

of the roughness increases and the roughness power spectrum approaches a delta function; 

and second, as the impedance contrast between the two fluids increases. 

The differences seen in other cases can be understood by remembering that both the 

mean and scattered fields must satisfy the two boundary conditions at the interface. The 

boundary impedance is found by satisfying the boundary conditions for the mean field, but it 

is only a single boundary condition, containing information about the reflection coefficient 

at the boundary. A perturbation method based on expanding the impedance boundary 

condition does not have enough information to satisfy the two boundary conditions for the 

scattered field. In contrast the two-sided approach uses both the reflection and transmission 

coefficients. In the limit of large impedance contrasts (Dirichlet or Neuman boundary 

conditions) there is only one boundary condition, and the two results agree exactly. 

The reason for agreement in the limit of large correlation length can also be understood. 

As the correlation length increases, the roughness power spectrum approaches a delta func- 
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tion around the incident wavenumber. Sound is not scattered into wavenumbers other than 

the incident wavenumber, just as mean-field energy isn't scattered to wavenumbers other 

than incident. Thus the scattering problem is identical to the mean-field reflection problem. 

Since the impedance was found by satisfying the boundary conditions for the mean-field, it 

will also satisfy the boundary conditions for the scattered field in this limit. 

Both of these approaches have been applied to the important problem of calculating the 

reflection coefficient of the rough Arctic ice sheet. The impedance method is computation- 

ally much faster, so if it is accurate it should be used. The question then becomes: does the 

ice sheet present a high enough impedance contrast to an incident wave for the impedance 

method to be accurate? In the last section we compare reflection coefficients for the rough 

ice plate calculated by both methods to answer this question. 

C.l    Theory 

The scattering theory developed by Kydryashov and Kryashev is outlined here. This theory 

has been described in a number of publications [40, 42], but is restated here for clarity. We 

consider scattering from an interface between two half-spaces separated by a rough boundary 

centered around z — 0, with z defined positive downwards. The rough boundary depth is 

given by a(f). A time dependence of elujt is assumed, so the waves propagating outward 

from the boundary are of the form e~lkz2Z for z > 0 (region 2) and elkzlZ for z < 0 (region 

1). A wave is incident on the boundary from region 1. Since the boundary condition is 

given in terms of an impedance relation, we write 

P(r, a{r)) - 7[^M],=a(f) = 0 (C.l) 

Here p is the acoustic pressure in medium 1 and ^ is the normal derivative. Assuming the 

interface slopes are small we write 

rs-«-Vi <a2) 

Assuming the height of the rough surface is small we expand the pressure in a Taylor series 

about z = 0. In Kl and K2 the expansion is done to first order, while in Kuperman's paper 

it is done to second order. Keeping terms to second order correction: 

p{r,a(r))=p(r,0) + a{r)     ^     + — ^— (c-3) 
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When considering scattering from a plate we will also expand the plate impedance in terms 

of the roughnesses o^ and a2 at the top and bottom of the plate: 

7 = 7o(M + ai|^ + a2^ + 0(a2) (C.4) 

where 70 is the impedance for the nominal plate height h0. For the case of two halfspaces, 

however, 7 = 70- 

We insert the expansions above into the impedance relation. We also write the acoustic 

field as the sum of a coherent (mean) part and a diffusely scattered part: 

p(f, z) =< p(r, z) > +s{r, z) (C.5) 

Taking the average of the resulting expression, remembering that both s(r,z) and a(f) are 

zero-mean, gives the coherent field boundary condition: 

<p(r,0)>-lo
d<P^>=<G(r)> (C.6) 

where 

W W     dz 2 dz2 70        K '     dz2 > 

+70-^ f^-t 70 < V±a(f)V±s(r, 0) > (C.7) 

The first order terms agree with the mean field equation found in Eq. 4 of Kl. Numerical 

work has shown the second order terms to have almost no impact on the answer. 

A boundary condition for the scattered field can be found by subtracting the mean-field 

boundary condition from the boundary condition for the total field. When doing so we will 

keep only first-order terms. From the expression for < G{r) > we see that the scattered field 

terms are always multiplied by a(r), so the mean-field equation will still be second-order 

accurate. The subtraction yields the boundary condition 

s(r,0)-lo^^- = Gs(r) (C.8) 

where 

Gs(r) = -a(r)d< p{£0) > + 7oa(r)*"< f^ 0) > - 7oV±a(r) • Vx < p(f,0) >    (C.9) 
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So far we have followed Kl and K2 almost exactly, with the exception of retaining 

second-order terms in the mean field boundary condition. At this point we diverge slightly 

and transform the boundary conditions obtained above, using the the 2-D wavenumber 

transform [45] 

1     r°° 
f(x,y,z)    =    —J ^F(q,z)e-^d2q 

F(q,z)    =    -jj{x,y,z)e^d2r (C.10) 

where q is the horizontal wavenumber. The transformed mean field boundary condition is 

<p(k,0) > -7o(fc)d<P^'0)> =< G(k) > (C.ll) 

where 

<G[f)>    =    -^Jd2q<ä(k-q) ds(q, 0) <a2>d2<p(k,0) > 
dz      > 2 dz2 

+?&/*,<a<iE-ffl*0»> >^<S)<£> *<§»>> 

+ ^ /d2?? • (k~q)< &(k - q)~s(q,0) > (C.12) 

The transformed equation for the scattered field is 

SfäO) -7o(9)^^ = G.(g) (C.13) 

where the forcing term becomes 

Gs(q) = ^Jd2k'a(q-k)[-^+l0(q^^+l0(^k-(q-k)}<p(k,0) >       (C.14) 

By inspection, we can write down a solution for the scattered field which is the same as Eq. 

6 in Kl: 

s(q,z) = Gs(q)^T^- (C15) 

where 

Tr(g) = Z(0,q) - l0(q)^Ml (C.16) 
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Here Z(z,q) is chosen so it solves the Helmholtz equation in medium 1 and the radiation 

condition as * -+ -co. For waveguide propagation Z is also required to satisfy the boundary 

conditions at other (smooth) interfaces, and n(q) gives rise to poles at the modal eigenval- 

ues qn of the unperturbed waveguide. The solutions Z{z,qn) will then correspond to the 

unperturbed normal modes. 

The angle-dependent impedance can be written in terms of the plane-wave reflection 

coefficient. For a fluid-fluid boundary with the sign conventions defined above the impedance 
for medium 2 is 

„ (f)s      P 1 + R(0) 70(60 = — =  L^  ,n ,„,. 
Vz      iklSin9(R(0) - 1) (CJ7) 

or, replacing 9 by k, 

7o(}" ^äRWT) <
C

-
18

) 

This sign convention holds for reflection for the bottom; we will switch it for reflection from 
the surface. 

C.2    Comparison of approaches for fluid-fluid rough bound- 
ary 

In this section we compare the expressions for scattering from a rough fluid-fluid inter- 

face obtained from impedance and two-sided approaches. First we continue looking at the 

impedance method. We can use the expressions above to find the scattered field and mean 

field reflection coefficient for a rough fluid-fluid surface, expressing the acoustic field in terms 

of plane waves. First we will look at the scattered field. 

We can write down forms for the quantities above: 

Z(z,q) = e^ (ai9) 

satisfies the Helmholtz equation and radiation conditions, so 

n(q) = l- iqzlj0(q) (C 20^ 
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The incident field is given by 

< p(k, z) >= e~lk^z + R{k)elk^z (C.21) 

so we can write down: 

<p{k,0)>    =    1 + R(k) 

a<f'0)>   -  *,(*(*)-U 
OZ 

d2<f^>    =    -&(!+*(*)) (C.22) 
ozz 

The expression for 70 is as given above, and the plane-wave reflection coefficient is given by 

R{q) = P2Qzl-piQz2 (c 23) 

P2Qzl + Pl<7z2 

With some algebra we can reduce the form given for s above to 

mz) = ^L /*&<,_3**** w*> - '>;»a+*w>w. -*■ (?-*>i (C.24) 
W'   '        2TT   J KH       ' i(piqz2 + p2Qzi) 

Here we have eliminated the Ä(^) terms coming from 70(9) since these do not appear in the 

Kuperman/Schmidt expressions, using the definition of the reflection coefficient. 

The scattered field expression is next substituted into the the coherent field boundary 

condition. This equation can be used to find a corrected coherent field impedance < 7 >. 

This expression is not given here, but is identical to Eq. 2 of K2 with the ^ terms set to 

zero, with the addition of second-order correction terms not included in K2. The mean-field 

impedance can be used to find a corrected mean-field reflection coefficient < R >, shown 

in plots below. The correction terms are not very important through most of the angles. 

These formulas can be compared to those from the articles by Kuperman and Schmidt. 

Prom Eq. 10 of Kuperman and Schmidt, using boundary operators for pressure waves 

interacting with a fluid-fluid boundary, we find 

:^1Z  fjzr-f-    r^9a[kzi(R(k)-l) + kz2T(k)] 
s{q,z)    =    -g^- J d2ka{q-k) 

i(plQz2 + P2Qzl) 

| {p2[kll -k-(q- fc)])(l + R(k)) - {Pl[kl2 -k-{q- k)))T{k) 

i(PiqZ2 + P2Qzl) 

This expression has two terms which are identical to those found using the impedance 
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method, but has two additional terms (multiplied by the transmission coefficient T(k)) 

coming from the two-sided nature of the boundary conditions. These terms can be rewritten 

using T(k) = 1 + R(k), but do not cancel out. 

Kuperman also gives an expression for the coherent field reflection coefficient. Plots of 

this are shown below. 

By comparing the two expressions for the scattered field, we can see when the two 

approaches will agree. As the correlation length of the roughness becomes very long, the 

power spectrum approaches a delta function, so the integrals only pick out q = k. The 

terms corresponding to the roughness slopes (i.e. k■ (q-k)))) disappear, and the remaining 

"extra" terms in the Kuperman/Schmidt expression cancel each other out. 

The approaches also agree for inherently one-sided boundary conditions, such as pressure- 

release surfaces or rigid bottoms. Plots of the reflection coefficients show that the agreement 

is better for large impedance contrasts at the interface, and worse for lesser contrasts. In 

the limit as the impedances are equal (pi -> p2, cj -> C2, the impedance method incorrectly 

predicts there will still be a scattered field, while the Kuperman results shows no scattered 

field. The impedance method also predicts a non-zero mean field < R > in this limit. This 

problem seems to be recognized in K2. 

It is fairly clear why the two results don't agree in general. At a fluid-fluid interface two 

boundary conditions must be satisfied. The boundary conditions can be rewritten in terms 

of two quantities, the reflection coefficient and the transmission coefficient. An impedance 

boundary condition based on the reflection coefficient alone is "missing" some information, 

and cannot satisfy two boundary conditions. For inherently one-sided boundary conditions 

(rigid or pressure-release) the impedance approach will give exact agreement, and it will 

give good agreement as the impedance contrast across the boundary becomes quite large. 

Results for mean-field reflection coefficients for different rough fluid-fluid interfaces are 

shown in Figs. 1 and 2. For all cases, medium 1 has c\ = 1500m/s,pi = lg/cm3, and 

the roughness is described by an isotropic Gaussian spectrum. Figure 1 shows scattering 

at 20Hz from a fluid bottom, with c2 = 1800m/s, p2 = 1.8, and a = 2m. Agreement 

is seen to be good for when the correlation length is long, but poor for a more realistic 

correlation length. Figure 2 shows the agreement is better for a bottom with a larger 

impedance difference (c2 = 3500 m/s, p2= 0.91) for the same roughness correlation length, 

and is excellent for scattering from a rough air-water interface. 

In other cases the impedance method in general predicts more scattering loss than 

Kuperman's result.   Since the impedance method predicts a non-zero scattered field as 
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Figure C-l: Effect of changing correlation length, f = 20 Hz; Gaussian power spectrum, c2 

= 1800 m/s, pi = 1.8, a = 2 m. Dotted line is R for smooth interface; solid is Kuperman 
result; dashed is Kudryashov result 
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Figure C-2: Effect of changing medium 2 impedance, f = 20 Hz; Gaussian power spectrum; 
Dotted line is R for smooth interface; solid is Kuperman result; dashed is Kudryashov result 

the impedance contrast between the halfspaces disappears, we expect to see it overpredict 

scattering loss for a small impedance-contrast like Figure lb). 

C.3    Numerical results: Rough ice plate 

In this section we look at reflection from a rough ice plate. Expressions from K2 for the 

mean field reflection coefficient were coded, and the results are compared to LePage's SELF- 

CON code [47] (which implements the Kuperman/Schmidt theory). Although Kudryashov's 

expressions are used, we use different sound speed profiles, ice parameters, and statistical 

models for the ice roughness, so the results are different from those shown in the Acoustln- 

190 



0.02T 

Mode# 10 15 

Figure C-3: Mode attenuation caused by scattering from rough ice plate, f = 20 Hz; Goff- 
Jordan power spectrum; Closed triangle is LePage result, including ice attenuation; open 
triangle is Lepage, no attenuation; Closed circle is Kudryashov result, K12 = 0.7; Open 
circle is Kudryashov, K12 = 0 

form reports [22, 21]. However, we note the code we have written from Kudryashov's 

expressions gives modal attenuations which are roughly the same as those shown in Fig. 17 

of [22]. 

Here we model reflection from an Arctic ice plate with the parameters: cp = 3500 m/s, 

cs = 1750 m/s, ice density = 0.91, c«, = 1431 m/s, H = 4 m., a = 2 m., CL = 22 m., ap = 2.5 

dB/A, as = 1.0 dB/A. Figure 3 shows Kevin LePage's results, with and without attenuation 

in the ice plate, and results from Kudryashov's formula, for K12 = 0 and K12 = 0.7. 

K12 is a parameter Kudryashov uses to measure the correlation between roughness at the 

upper and lower boundaries of the ice plate; KYI = 1 denotes total correlation, while 

K12 = 0 means zero correlation. In LePage's code the roughnesses are assumed to be 

totally uncorrelated. Earlier, close agreement was shown between LePage's results and 

Kudryashov's with K12 = 0.7 (though different statistical models for ice roughness were 

used for the comparison) [22]. As is seen in Fig. 3, LePage's results without ice attenuation 

agree reasonable well with the impedance model with K12 = 0.7. However, when ice 

attenuation is included (meaning the scattering theories model the same physical scenario) 

LePage's code is seen to give much larger modal attenuations. 
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